elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Investigating Plastic Anisotropy of Single and Two-Phase (α2-Ti3Al + γ-TiAl) PST-TiAl Through Computational Yield Surface Analysis

Kabir, M. Rizviul und Murat, M. Bahadir (2025) Investigating Plastic Anisotropy of Single and Two-Phase (α2-Ti3Al + γ-TiAl) PST-TiAl Through Computational Yield Surface Analysis. Metals. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/met15020132. ISSN 2075-4701.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
11MB

Kurzfassung

The anisotropic mechanical behaviour of multi-phase TiAl alloys is intrinsically governed by the anisotropic crystal properties and morphology of their constituent phases, which control the initiation of local plasticity. To advance the understanding of macroscopic plastic anisotropy in multi-phase alloys, this study presents a comprehensive numerical investigation of a two-phase (α2-Ti3Al + γ-TiAl) lamellar TiAl alloy, with a focus on the evolution of plasticity across multiple structural scales. Utilizing the crystal plasticity finite element method (CPFEM), the influence of lamellar orientation (φ) and applied loading angles (θ) on plastic deformation and yield surface evolution was analysed in both the individual phases and in the combined two-phase system. The findings reveal that phase-specific anisotropy stems from the activation of distinct slip systems in the α2 and γ phases, with the activation closely tied to the type of loading (e.g., proportional biaxial loading) and the direction of the load path. Furthermore, the anisotropy of the two-phase system is significantly influenced by the alignment between the lamellar interface orientation and the load-path direction. Analysis with varying load-path directions across different stress planes clarifies how local deformation constraints within the embedded phases modulate slip system activation, leading to either the enhancement or suppression of specific deformation mechanisms. This, in turn, alters the overall yield behaviour of the material. Based on these simulation results, this study provides a detailed understanding of the internal constraints within embedded phases and their role in the evolution of plasticity. It elucidates how anisotropy develops under diverse loading conditions and underscores the importance of hierarchical plasticity in shaping the global anisotropic response of TiAl alloys.

elib-URL des Eintrags:https://elib.dlr.de/212423/
Dokumentart:Zeitschriftenbeitrag
Titel:Investigating Plastic Anisotropy of Single and Two-Phase (α2-Ti3Al + γ-TiAl) PST-TiAl Through Computational Yield Surface Analysis
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kabir, M. Rizviulmohammad-rizviul.kabir (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Murat, M. BahadirNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:28 Januar 2025
Erschienen in:Metals
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.3390/met15020132
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2075-4701
Status:veröffentlicht
Stichwörter:plastic anisotropy; PST-TiAl alloy; crystal plasticity; yield surface; two-phase alloy; lamellar microstructure
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Umweltschonender Antrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CP - Umweltschonender Antrieb
DLR - Teilgebiet (Projekt, Vorhaben):L - Werkstoffe und Herstellverfahren
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Werkstoff-Forschung > Experimentelle und numerische Methoden
Hinterlegt von: Kabir, Dr. -Ing Mohammad Rizviul
Hinterlegt am:11 Feb 2025 08:16
Letzte Änderung:11 Feb 2025 08:16

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.