elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Dual temporal gated multi-graph convolution network for taxi demand prediction

Yang, Taoru und Tang, Xiaopei und Liu, Rong (2023) Dual temporal gated multi-graph convolution network for taxi demand prediction. Neural Computing and Applications, 35, Seiten 13119-13134. Springer Nature. doi: 10.1007/s00521-021-06092-6. ISSN 0941-0643.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://link.springer.com/article/10.1007/s00521-021-06092-6

Kurzfassung

Taxi demand prediction is essential to build efficient traffic transportation systems for smart city. It helps to properly allocate vehicles, ease the traffic pressure and improve passengers’ experience. Traditional taxi demand prediction methods mostly rely on time-series forecasting techniques, which cannot model the nonlinearity embedded in data. Recent studies start to combine the Euclidean spatial features through grid-based methods. By considering the spatial correlations among different regions, we can capture how the temporal events have impacts on those with adjacent links or intersections and improve prediction precision. Some graph-based models are proposed to encode the non-Euclidean correlations as well. However, the temporal periodicity of data is often overlooked, and the study units are usually constructed as oversimplified grids. In this paper, we define places with specific semantic and humanistic experiences as study units, using a fuzzy set method based on adaptive kernel density estimation. Then, we introduce dual temporal gated multi-graph convolution network to predict the future taxi demand. Specifically, multi-graph convolution is used to model spatial correlations with graphs, including the neighborhood, functional similarities and landscape similarities based on street view images. As for the temporal dependencies modeling, we design the dual temporal gated branches to capture information hidden in both previous and periodic observations. Experiments on two real-world datasets show the effectiveness of our model over the baselines.

elib-URL des Eintrags:https://elib.dlr.de/212156/
Dokumentart:Zeitschriftenbeitrag
Titel:Dual temporal gated multi-graph convolution network for taxi demand prediction
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Yang, TaoruSchool of Geography and Planning, Sun Yat-Sen University, Guangzhou, ChinaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Tang, XiaopeiSchool of Geography and Planning, Sun Yat-Sen University, Guangzhou, ChinaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Liu, RongRong.Liu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2023
Erschienen in:Neural Computing and Applications
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
Band:35
DOI:10.1007/s00521-021-06092-6
Seitenbereich:Seiten 13119-13134
Verlag:Springer Nature
ISSN:0941-0643
Status:veröffentlicht
Stichwörter:Spatiotemporal modeling, demand prediction, graph convolution, street view
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Haschberger, Dr.-Ing. Peter
Hinterlegt am:24 Jan 2025 07:58
Letzte Änderung:17 Feb 2025 08:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.