Yang, Taoru und Tang, Xiaopei und Liu, Rong (2023) Dual temporal gated multi-graph convolution network for taxi demand prediction. Neural Computing and Applications, 35, Seiten 13119-13134. Springer Nature. doi: 10.1007/s00521-021-06092-6. ISSN 0941-0643.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://link.springer.com/article/10.1007/s00521-021-06092-6
Kurzfassung
Taxi demand prediction is essential to build efficient traffic transportation systems for smart city. It helps to properly allocate vehicles, ease the traffic pressure and improve passengers’ experience. Traditional taxi demand prediction methods mostly rely on time-series forecasting techniques, which cannot model the nonlinearity embedded in data. Recent studies start to combine the Euclidean spatial features through grid-based methods. By considering the spatial correlations among different regions, we can capture how the temporal events have impacts on those with adjacent links or intersections and improve prediction precision. Some graph-based models are proposed to encode the non-Euclidean correlations as well. However, the temporal periodicity of data is often overlooked, and the study units are usually constructed as oversimplified grids. In this paper, we define places with specific semantic and humanistic experiences as study units, using a fuzzy set method based on adaptive kernel density estimation. Then, we introduce dual temporal gated multi-graph convolution network to predict the future taxi demand. Specifically, multi-graph convolution is used to model spatial correlations with graphs, including the neighborhood, functional similarities and landscape similarities based on street view images. As for the temporal dependencies modeling, we design the dual temporal gated branches to capture information hidden in both previous and periodic observations. Experiments on two real-world datasets show the effectiveness of our model over the baselines.
elib-URL des Eintrags: | https://elib.dlr.de/212156/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Dual temporal gated multi-graph convolution network for taxi demand prediction | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2023 | ||||||||||||||||
Erschienen in: | Neural Computing and Applications | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Band: | 35 | ||||||||||||||||
DOI: | 10.1007/s00521-021-06092-6 | ||||||||||||||||
Seitenbereich: | Seiten 13119-13134 | ||||||||||||||||
Verlag: | Springer Nature | ||||||||||||||||
ISSN: | 0941-0643 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Spatiotemporal modeling, demand prediction, graph convolution, street view | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||
Hinterlegt am: | 24 Jan 2025 07:58 | ||||||||||||||||
Letzte Änderung: | 17 Feb 2025 08:58 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags