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Abstract
Taxi demand prediction is essential to build efficient traffic transportation systems for smart city. It helps to properly

allocate vehicles, ease the traffic pressure and improve passengers’ experience. Traditional taxi demand prediction methods

mostly rely on time-series forecasting techniques, which cannot model the nonlinearity embedded in data. Recent studies

start to combine the Euclidean spatial features through grid-based methods. By considering the spatial correlations among

different regions, we can capture how the temporal events have impacts on those with adjacent links or intersections and

improve prediction precision. Some graph-based models are proposed to encode the non-Euclidean correlations as well.

However, the temporal periodicity of data is often overlooked, and the study units are usually constructed as oversimplified

grids. In this paper, we define places with specific semantic and humanistic experiences as study units, using a fuzzy set

method based on adaptive kernel density estimation. Then, we introduce dual temporal gated multi-graph convolution

network to predict the future taxi demand. Specifically, multi-graph convolution is used to model spatial correlations with

graphs, including the neighborhood, functional similarities and landscape similarities based on street view images. As for

the temporal dependencies modeling, we design the dual temporal gated branches to capture information hidden in both

previous and periodic observations. Experiments on two real-world datasets show the effectiveness of our model over the

baselines.
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1 Introduction

Taxi is one of the most common forms of commute in our

daily life. Due to the advantage of the latest internet

technology and its infiltration to every aspect of the soci-

ety, many large-scale online platforms have emerged for

taxi requesting services, such as Uber, Didi Chuxing and

Grab. All these mobile apps provide a more flexible and

efficient way to satisfy passengers’ demand and meanwhile

lead to a reduction in time the drivers spend in an empty

vehicle [1]. However, both traditional taxi service and app-

based ride hailing still face the challenge of supply–de-

mand imbalance, due to the following two-sided reasons.

On the supply side, most drivers depend on their practical

experiences to plan their routes and look for potential

pickups [2], which is a blind action in some way. On the

demand side, passengers tend to travel in an aggregated

and random mode. For example, the taxi demand will rise

during the morning and the evening peak and near the

transportation hubs. Therefore, how to utilize the available

data to predict the taxi demand is the key to mitigating the

supply–demand disequilibrium. It also helps to better uti-

lize road resources [3] and enhance the traffic management

[4], which is a great leap forward in smart city construction

[5].

Taxi demand is defined as the number of taxi request at

one location at a time point [6]. Predicting taxi demand is a
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challenging problem because of the inherent complex

properties of the taxi demand. Specifically, it can be

descried as three kinds of dependencies, namely time

dependencies, spatial dependencies and exogenous depen-

dencies [7]. Large quantities of researches have been done

to take advantage of the dependencies to predict taxi

demand.

The time dependencies are the relationship of the taxi

demand at different timestamps [8]. Taxi demand at adja-

cent timestamps tends to be closer for the reason that the

demand is in constant. What’s more, it has strong period-

icity according to the people’s behavioral habits. For

example, the demand increases in the rush hours every day.

Thus, taxi demand prediction, similar to many other traffic

prediction problems, can be comprehended as a time-series

prediction problem, which deduces the future demand from

the historical demand data. Representatively, autoregres-

sive integrated moving average (ARIMA) and its improved

versions have been successfully applied to traffic fore-

casting. ARIMA uses differencing to transform data into a

stationary pattern, and integrates the autoregressive part

and the moving average part by choosing proper parame-

ters based on data analysis. Li et al. [9] proposed a variant

of ARIMA to forecast the human mobility patterns in an

urban taxi transportation system. Luis et al. [10] combined

three time-series methods including ARIMA to predict the

spatial distribution of taxi passengers for a short-term time

horizon. Although traditional time-series methods have

simple structure and strong operability using only temporal

input, the spatial dependencies and exogenous dependen-

cies are often overlooked in these models, both of which

can improve taxi demand prediction results.

In fact, spatial dependencies of the taxi demand among

different places are important. Places are not isolated but

are connected to each other in many ways. According to

Tobler’s First Law of Geography, everything is related to

everything else, but near things are more related than dis-

tant things [11]. Taking the physical distance as an

example, the taxi demand of a region is generally closer to

adjacent regions than the distant ones. In addition, exoge-

nous dependencies such as weather and holiday event do

have impact on daily taxi demand as well. Lots of efforts

have been made to utilize these two types of dependencies

to modify their models. Tong et al. [12] proposed a unified

linear regression model named as Linear Unit Original

Taxi Demand (LinUOTD), encoding the spatial, temporal

and other external features into massive features with more

than 200 million dimensions. These methods simulate

overall trend of the data, but are likely to fail on unusual

growth or slowdown in series.

Recently, deep learning has been successfully applied in

computer vision [13–15], natural language processing [16]

and network analysis [17]. The different techniques of deep

learning, such as transfer learning [18–21], multi-task

learning [22–24], semisupervised [25] and unsupervised

learning [26], enrich the application scenarios greatly.

Many researchers explored the potential of neural network

in the traffic predicting problems [27–31]. The data-driven

deep learning methods can better model the nonlinearity of

taxi demand data and the dynamic data trend, which can be

categorized into two types based on model dependencies:

(1) Methods that only simulate the temporal dependen-

cies. As one of the most representative works of

time-series forecasting, recurrent neural network

(RNN) is widely used in taxi demand prediction.

Xu et al. [30] used long short-term memory (LSTM)

to encode the useful information of the historical

data in multiple layers, then passed the results to the

mixture density networks and produced the demand

predictions. Vanichrujee et al. [31] combined LSTM,

gated recurrent unit (GRU) and extreme gradient

boosting (XGBOOST) in an ensemble model to gain

the best result. Although competitive predicting

results can be gained merely consider the demand

data from the past, most models did not pay attention

to the different impacts of the historical data and the

periodicity of the data on the result. These ignored

properties can make a big difference to the predicting

process.

(2) Methods that combine the spatial and exogenous

dependencies with temporal correlations. How to

combine the spatial, temporal and exogenous seg-

ments properly is the key to model building. Yao

et al. [32] treated the traffic in a city as an image and

the taxi demand for a time period as pixel values and

applied convolutional neural network (CNN) on the

resulting images. The output of the CNN was fed to

fully connected layers and LSTM layers, for subse-

quent concatenation with the exogenous relevant

information. Lai et al. [33] presented a LSTM-based

combination model, using a spatiotemporal compo-

nent to capture the spatiotemporal information. An

attribute component was also used to represent the

exogenous dependencies (e.g., weather, point of

interest).

Despite the success of applying CNN for aggregating

spatial information, most works focus on constructing a

Euclidean structure to simulate the traffic process and

overlook the non-Euclidean factors. They model the spatial

dependencies mainly based on physical distance and dis-

tribution among different places. However, the non-Eu-

clidean relationships are critical as well. Places that share

similar functionality are more likely to have similar ten-

dency of taxi demand. For example, taxi request orders in

residential areas rise in the morning peak, because most
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people leave home for work during this period. Recent

researches have shed light on the potential of graph con-

volutional network (GCN) on extracting spatial features in

a non-Euclidean way. The spatiotemporal multi-graph

convolution network (ST-MGCN) proposed by Geng et al.

[34] encoded the non-Euclidean pairwise correlations

among regions with multi-graph convolution and re-

weighted different historical observations with contextual

gated recurrent neural network (CGRNN). The multi-graph

setting helps to tackle complicated problems in a multi-

perspective way, which can be found useful in many

domains [35–38]. Therefore, the multi-graph convolution

provides the possibility to consider different types of non-

Euclidean correlations simultaneously.

These methods tend to mesh the city into rectangular

grids and take them as basic region units, for the conve-

nience of data partition and the application of CNN.

However, it fails to describe the places in a more realistic

and perceptual way. The geographical concept of place is

often used as ‘‘a portion of space’’ [39] within which

people carry out day-to-day actions and routines [40].

When we think of a thriving business area, we refer an

irregular region with obscure boundaries rather than a

rectangular area with distinct boundaries. Zhu et al. [41]

delineated place boundaries using a kernel density esti-

mation and studied the place characteristics in geographic

contexts through GCN. The basic comprehension of places

provides the support for human-centroid understanding of

geographic environment and geographic analysis, which is

often overlooked or simplified under the scenario of taxi

demand prediction.

In this paper, we propose a dual temporal gated multi-

graph convolution network (DTA-GCN) to predict taxi

demand, which is based on the structure of ST-MGCN. By

utilizing the POI data, we first adopt a fuzzy set method

combined with adaptive kernel density estimation to

delineate multiple places’ footprints. These extracted pla-

ces are treated as basic geographic units and graph vertexes

for taxi demand prediction. Then, we construct the multi-

graph structure to model three different types of correla-

tions among places. In addition to the neighborhood graph

and the functional similarity graph, we also use the street

view images to depict the street landscape of places and

model the landscape similarity with graph. For each graph,

dual CGRNN is used to aggregated information from the

historical observations. Specifically, the dual temporal

gated branches take the observations from previous

timestamps and periodic timestamps as input, respectively.

The temporal encoded features are then passed to the multi-

graph convolution, modeling the non-Euclidean correla-

tions among places. Finally, the taxi demand predictions

can be generated by a subsequent fully connected layer.

Our main contributions can be summarized as follows:

(1) Based on the original ST-MGCN, we design the dual

temporal gated branches, adding another temporal

branch to the CGRNN to capture the periodicity of

the data. The dual branches can model the long- and

short-term dependencies and leverage the periodic

pattern, improving the robustness of the model.

(2) We embed landscape similarity among places in a

graph when predicting taxi demand, as the supple-

ment of functional correlation. The visual features of

city landscape are extracted from street view images,

for the reason that it has similar perspective with

pedestrian and authentic description.

(3) We define places as the basic units of taxi demand

study, which are extracted with a fuzzy set method

instead of simply meshing the study area. The

definition of places gives us a more intuitive

understanding when observing the taxi demands.

The remaining paper is organized as follows: In Sect. 2,

related works are introduced, including spatiotemporal

prediction in social computing, graph convolution network

and urban landscape analysis with street view images. The

framework and details of the proposed model are described

in Sect. 3. The experimental results and discussion are

reported in Sect. 4. Section 5 concludes the paper.

2 Related work

2.1 Spatiotemporal prediction in social
computing

Spatiotemporal prediction is a fundamental issue in social

computing. With the development of the society and

technology, the explosive growth in data storage capabili-

ties enables us to easily trace the spatial and temporal

properties of any historical event. How to capture useful

information from the big data resources and make a rea-

sonable prediction is the key to social management.

Therefore, when we refer to a spatiotemporal prediction

method, the most distinct part of the research is how to

encode the spatial and temporal information, respectively,

and merge them together. Taking taxi demand prediction as

an example, lots of efforts have been made in recent years.

In previous works, the Euclidean structure is naturally

constructed to simplify the calculation and utilize convo-

lution. Wei et al. [42] proposed a zero-grid ensemble

spatiotemporal (ZEST) model, modeling all correlations

separately and combining them at last. For the temporal

predictor, they analyzed the data and designed the fluctu-

ation rate. For the spatial predictor, they made use of the

target grid’s neighborhood data and trained an artificial

neural network. Then, gradient boosting decision tree
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(GBDT) was adopted to combine the results of different

predictors. Ke et al. [43] chose to transform the LSTM

network with convolutional techniques into a convolutional

LSTM layer and proposed the fusion long short-term

memory network (FCL-Net).

Non-Euclidean structured data, however, is more com-

mon in social computing, such as users and posts on social

network, or traffic flow on roads. Processing the non-Eu-

clidean data as graphs is helpful for data analysis. How-

ever, since the number of neighbors of non-Euclidean data

is not fixed, it is hard for convolution neural network to

operate. We need a new form of spatial information

aggregation for graphs, which is graph convolution. In the

traffic forecasting area, Cui et al. [44] first encoded the

spatial information with graph convolution, then the output

features were fed to long short-term memory neural net-

work (LSTM). While in the spatiotemporal graph convo-

lutional networks (STGCNs) proposed by Yu et al. [45],

entire convolutional structure was used on the time axis

instead of recurrent neural network. The temporal gated

convolution was combined with the spatial graph convo-

lution to form spatiotemporal convolutional blocks.

In ST-MGCN [34], contextual gated recurrent neural

network (CGRNN) was proposed to incorporate the tem-

poral global contextual information, and multi-graph con-

volution was used to model multiple spatial correlations

with graphs. However, ST-MGCN only takes previous

observations as input and does not pay attention to the

periodic property of data. Besides, the place description

and place correlation need to be further explored. In this

paper, the spatial and temporal information encoding is

modified based on the original model.

2.2 Graph convolution network

Graph convolutional network (GCN) is a new form of

spatial information aggregation for graphs, which can be

categorized into spatial-based and spectral-based methods

[46]. Spatial-based methods define graph convolution

based on the vertexes’ spatial correlations and collect

information within the neighborhood of vertexes. In this

paper, we apply spectral-based GCN methods with a solid

mathematical foundation. Given a graph G ¼ ðV ;AÞ,
where V is the set of vertices and A 2 RjV j�jVj. A normal-

ized graph Laplacian matrix can be defined as

L ¼ I� D�1
2AD�1

2, where D is a diagonal matrix of vertex

degrees. The graph convolution, taking the signal and a

filter as input, is based on the graph Fourier transform,

where the basis is formed by eigenvectors of the normal-

ized graph Laplacian. Spectral-based GCN methods all

follow this framework, so the key difference is how to

choose the filter to reduce the computational complexity.

Defferrad et al. [47] proposed ChebNet and approximated

the filter by Chebyshev polynomials of the diagonal matrix

of eigenvalues. A graph convolution operation is defined

as:

Xlþ1 ¼ r
XK�1

k¼0

akL
kXl

 !
ð1Þ

where Xl denotes the features in the l-th layer, ak is the

trainable coefficient, Lk is the k-th power of the graph

Laplacian matrix, r is the activation function.

2.3 Urban landscape analysis with street view
images

City streets are important representatives of urban land-

scapes, because they serve as the main interface for the

interaction between people and the city environment and

the focal point of daily activities. Street view images

describe the urban landscapes at ground level and relate

directly to the human perceptions of the urban environment

[48]. In urban landscape analysis, Li et al. [49–51] adopted

a series of landscape indexes to quantify the landscape

characteristics unfolded in street view images. However,

these artificially designed indexes concentrate on the visual

decomposition of image, and the presented features are

very limited. Recently, the development of deep learning

and the availability of large street view dataset provide a

more automatic and sophisticated form of city sense. Urban

landscape analysis therefore has steadily moved from a

surface-level description to a quantitative tool for place

analysis. Zhu et al. [41] investigated the feasibility of

incorporating place connections to predict place charac-

teristics. Places extracted from multi-source geodata are

treated as graph vertices, and different types of connections

are measured in the graph. When quantifying place char-

acteristics, they used ResNet [52] as feature extractor to

transform the street view image into a 512-dimensional

visual feature vector. Place features were further gained by

taking the average of all visual vectors within a place. The

resulting features and graph connections were input to

graph convolution network to predict the functional prop-

erties of places. The experiment described above showed

the validity of using street view images to represent the

place characteristics and mapping it to functional descrip-

tion. In this paper, we utilize the deep learning network to

generate visual features to represent the urban landscape

characteristics, and the landscape similarity graph is built

based on the extracted features.
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3 Methodology

In this section, we first introduce the problem definition of

taxi demand prediction. Then we elaborate on delineating

the places’ footprints based on POI data, and the structure

of the proposed DTG-MGCN.

3.1 Problem definition

All places in the city are regarded as a set of graph vertexes

V, and the correlation among the vertexes is formulated as

an adjacency matrix A. Together they constructed a place-

based graph G ¼ ðV;AÞ. Suppose XðtÞ represent the num-

ber of orders of all places at the t-th timestamp. The taxi

demand prediction needs to map the historical observations

with a fixed temporal length T to the taxi demand in the

next timestamp with a designed function f : RjVj�T ! RjV j.

½Xðt�Tþ1Þ; . . .;XðtÞ��!f Xðtþ1Þ ð2Þ

In most cases, the input temporal length T is designed

based on different lengths and sample rates of time series.

3.2 Delineating place boundaries

Different from all the grid-based model, we carry out the

taxi demand prediction based on the concept of place. A

place is a geographical area with location names, human-

istic feelings and other properties [53, 54]. The density of

multiple point sets reflects people’s recognition of places.

We collect a POI dataset and adopt a fuzzy method based

on adaptive kernel density estimation proposed by Wang

et al. [55] to identify the places. Each POI is labeled with a

place name indicating the common business area it belongs

to. For the point set in each place, the adaptive kernel

density estimation was first applied to obtain a intuitive

boundary. Suppose xiði ¼ 1; 2; . . .; nÞ are independent

identically distributed samples. In the region centered at xi
and with a radius h, the probability of xi occurring decays

with distance. It can be modelled with a kernel function.

Kernel density estimation sums up the probability density

functions of all samples to gain a continuous probability

density surface. The formation of kernel density estimation

is as follows:

f ðxÞ ¼ 1

nh2

Xn

i¼1

K
x� xi
h

� �
ð3Þ

where f is the probability density function, h stands for the

bandwidth and K represents the kernel function. Here, we

apply the quadratic kernel proposed by Silverman et al.

[56]. The bandwidth h decides the smoothness and plays an

important role in estimation result. Overlarge h value leads

to over simplified result, while small value pays too much

attention to the local variations within the point set,

resulting in discrete regions. Therefore, an adaptive h value

is needed for diverse sizes and point density of multiple

places. Because the point set belongs to a specific place, we

use the area of bounding rectangle and the total number of

the point set, i.e., S and N, to calculate the adaptive

bandwidth.

h ¼ k

ffiffiffiffi
S

N

r
ð4Þ

where k represents an adjustable coefficient. According to

the equation, when the area is fixed, the larger the total

number is, the denser the point distribution will be. We can

get smaller bandwidth for dense point set and vice versa.

The POI kernel densities are then normalized into [0,1],

indicating to what extent an area belongs to this place.

However, the unevenness of POI distribution also affects

the estimated density value. For example, overly congre-

gate POI in a few places will give rise to density value,

which makes the remaining values less distinguishable and

likely to be overlooked. To modify this situation, a fuzzy

method is applied to further define the membership related

to the kernel density. We use fuzzy membership function l
to map the normalized density to place membership and

perform an alpha cut.

lðxÞ ¼ 1

1þ x
m

� ��s ð5Þ

where s stands for divergence and m is the middle point,

i.e., the value of independent variable when the member-

ship equals to 0.5. Finally, a threshold of 0.5 is adopted to

delineate the core area of the place names. These delin-

eated polygons are used as study units and graph vertexes

in subsequent experiments.

3.3 Dual temporal gated multi-graph
convolution network

We first encode the places and the multiple correlations

among the places with multiple graphs. The extracted

places are considered as graph vertexes, while the corre-

lations are encoded as graph edges, which can be denoted

by adjacency matrix in a mathematical form. With the

constructed graphs, we adopt DTG-MGCN to model the

spatial and temporal characteristics of the dataset and

predict future taxi demand of places. First, dual temporal

gated branches are used to aggregate information from the

previous and the periodic observations, respectively. Sec-

ond, we use multi-graph convolution to model different

types of correlations among places, taking the encoded

temporal features as input. Finally, a fully connected neural

network transform features into taxi demand prediction.
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3.3.1 Multi-graph construction

Adjacency matrix represents the correlation among graph

vertexes. It is the key to operate graph convolution and the

foundation of spatial information aggregation. In this work,

three types of correlations are considered and transformed

into the corresponding graph, including (1) the neighbor-

hood graph GN ¼ ðV ;ANÞ, which encodes the physical

distance among places, (2) functional similarity graph

GF ¼ ðV ;AFÞ, which encodes the functional similarity

among places based on the POI data, (3) landscape simi-

larity graph GL ¼ ðV ;ALÞ, which encodes the urban land-

scape similarity among places with the street view data. In

neighborhood graph, the spatial proximity of any two

places is measured by the Euclidean distance between the

center of them. A threshold is used to define whether they

are adjacent.

AN;ij ¼
1; disðvi; vjÞ� L

0; otherwise

�
ð6Þ

The function of places fundamentally determines the taxi

demand. And places that share similar function tend to

have similar trend of taxi request orders. As a data source

with rich properties, POI data contain the address, place

name, functional categories and specific coordinates of the

point. It can sufficiently represent the functional charac-

teristics of places. Therefore, in functional similarity graph,

we measure the POI similarity with the POI feature vector.

AF;i;j ¼ simðPvi ;PvjÞ 2 ½0; 1� ð7Þ

where Pvi , Pvj are the POI feature vectors of place vi and

place vj, respectively. The dimension of vector is equal to

the number of functional categories, and each entry is equal

to the number of points belonging to the corresponding

category within a specific place.

Similarly, as for the landscape similarity graph, we

calculate the landscape similarity using static street view

images.

AL;i;j ¼ simðSvi ; SvjÞ 2 ½0; 1� ð8Þ

where Svi , Svj are the street view feature vectors of place vi
and place vj, respectively. In this work, ResNet-101 is used

as feature extractor, generating a 2048-dimensional feature

for each street view image. As shown in Fig. 1, distinct

variations can be observed among areas with different

landscapes, such as the historic site and business area. We

input the street view images into the PSPNet [57] with the

ResNet-101 as backbone, which has been pretrained on

cityscapes dataset [58]. The final street view feature vectors

are equal to the average of all features within the same

place.

3.3.2 Spatial correlation modeling

With the constructed graphs, we apply the multi-graph

convolution to model the spatial relationship as defined in

Equation 9.

Xlþ1 ¼
[

A2 �A

ðrf ðA; hiÞXlWlÞ ð9Þ

where Xl 2 RjV j�Pl , Xlþ1 2 RjV j�Plþ1 are the feature vectors

of |V| places in layer l and lþ 1, respectively. r represents

the activation function and
S

denotes the aggregation

function such as sum, max and average. �A represents the

set of graphs, and f ðA; hiÞ 2 RjV j�jV j represents the aggre-

gation matrix based on graph A 2 �A parameterized by hi.
Wl 2 RPl�Plþ1 is the transformation matrix from layer l and

lþ 1.

In this work, we aggregate the multiple graph’s convo-

lution results after the activation function, while in ST-

MGCN the linear results are aggregated before the acti-

vation function. This modification keeps the integrity of

different correlation graphs better. The aggregation matrix

f ðA; hiÞ 2 RjVj�jV j is chosen to be the K-order polynomial

function of the graph Laplacian L.

The intricacy of polynomial form transformation not

only lies in the parameter reduction. It takes full advantage

of the real symmetric positive semidefinite property of the

normalized graph Laplacian matrix to minimize the com-

puting complexity. After a series of simplification, we can

skip the eigen decomposition and use L to compute the

convolution directly.

The polynomial also allows the spectral-based method

to be spatial localized. It enables the parameter sharing in

graph convolution to follow a local stationary pattern,

which is the same as the property of graph-structured data

[59]. Similar to the kernel size in CNN, k defines the size of

receptive field in graph convolution. An example is given

in Fig. 2. Taking vertex 1 as the centralized region, when

the maximum degree of graph Laplacian K is set to 1, only

the information of one-hop neighbors, colored in yellow,

will be aggregated. The corresponding entry of the con-

volution operational matrix will be nonzero and share the

same parameter. When K is set to 2, the extent of spatial

feature extraction will expand to the two-hop neighbors,

colored in green. All the two-hop neighbors share the same

parameter, but different from those in one-hop

neighborhood.

Multi-graph convolution models spatial correlation in a

more flexible way due to the diversity of the correlation.

Vertexes can be connected based on not only the real

geographical location, but also relatively abstract features.

The expression of connection can be qualitative, e.g., 0 or 1

in neighborhood graph, or quantitative such as using the
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similarity function in functional similarity graph. We take

the temporal embedded features as input to the multi-graph

convolution instead of the other way around. It’s more

logical to emphasize the spatial dependencies based on the

temporal features. In this way, the demand values can be

aggregated through multi-graph correlations and therefore

improve the prediction results.

3.3.3 Temporal correlation modeling

We introduce the dual temporal gated branches to model

the temporal dependencies among historical observations

in previous timestamps and periodic timestamps, respec-

tively, and then integrate the encoded results. Both bran-

ches are based on the contextual gated recurrent neural

network (CGRNN) in ST-MGCN (Fig. 3). CGRNN

focuses on the global contextual information in temporal

dimension. It captures the context by gating mechanism,

i.e., a reweighting of the original sequence. Assuming that

there are T temporal observations and XðtÞ 2 RjVj�P denotes

the t-th observation, where P is the dimensionality of the

feature. P will be 1 if the feature only contains the number

of orders. The workflow of contextual gating mechanism

will be described below.

Firstly, the historical data with its neighborhood infor-

mation is concatenated to generate region descriptions,

which is regarded as contextual information. The infor-

mation aggregation is also obtained by a graph convolution

operation FK 0

G with max degree K 0 using the corresponding

graph Laplacian matrix.

X̂
ðtÞ ¼ ½XðtÞ;FK0

G ðXðtÞÞ� t ¼ 1; 2; . . .T ð10Þ

Secondly, the global average pooling Fpool is used over all

regions to produce the summary of each temporal obser-

vation. It further aggregates the contextual information

within each timestamp (Eq. 11).

zðtÞ ¼ FpoolðX̂
ðtÞÞ ¼ 1

jV j
XjV j

t¼1

X̂
ðtÞ
i;: t ¼ 1; 2; . . .T ð11Þ

With the summarized vector z, an attention operation

(Eq. 12) is applied, where W1 and W2 are trainable

weights, d and r denote the ReLU and sigmoid function,

respectively.

s ¼ rðW2dðW1zÞÞ ð12Þ

Finally, s serves as a reweighting factor to the original

historical input (Eq. 13), where � denotes dot product.

~X
ðtÞ ¼ XðtÞ � sðtÞ ð13Þ

After the contextual gating, a shared RNN layer with

Fig. 1 Extracting landscape features from street view images

Fig. 2 An example of ChebNet graph convolution centralized at the

red vertex. Left: The centralized vertex is colored red. The one-hop

neighbors are colored yellow and the two-hop neighbors are colored

green. Middle: When the maximum degree of graph Laplacian

increases, the reception field will grow based on the hop counts.

Right: The convolution result equals to a sum among graph

transformations with degree value from 1 to K. The figure only

shows the operation to vertex 1. In practical convolution, the same

operation will be applied to all vertexes
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weight W3 across all regions is applied to encode the gated

sequence in different timestamps of a region into a single

vector Hi;:. The basic idea of RNN is to recursively com-

bine the current historical observation with the latest hid-

den state through a series of nonlinear operations. In this

implementation, we choose to use long short-term memory

network (LSTM), a variant of RNN, to better capture the

global dependencies.

fðtÞ ¼ rðWf ½hðt�1Þ; xðtÞ� þ bf Þ

iðtÞ ¼ rðWi½hðt�1Þ; xðtÞ� þ biÞ

cðtÞ ¼ fðtÞ � cðt�1Þ þ iðtÞ � tanhðWc½hðt�1Þ; xðtÞ� þ bcÞ

oðtÞ ¼ rðWo½hðt�1Þ; xðtÞ� þ boÞ

hðtÞ ¼ oðtÞtanhðcðtÞÞ
ð14Þ

where r is sigmoid function. i; f; o and c are input gate,

forget gate, output gate and hidden cell state, respectively,

parameterized with corresponding weights W and bias b.

Equation 14 can be further simplified as follows.

hðtÞ ¼ LSTMðxt; ht�1Þ ð15Þ

Therefore, the generation of Hi;: through LSTM can be

expressed by Eq. 16.

HG
i;: ¼ LSTMð ~XðtÞ

i;: ;
~X
ðtþ1Þ
i;: ; ~X

ðtþ2Þ
i;:

. . .; ~X
ðT�1Þ
i;: ; ~X

ðTÞ
i;: ;W3Þ

ð16Þ

Taking previous observations as input, LSTM can well

represent the data continuity in temporal dimension.

However, this learning mechanism may not fit to the taxi

demand data completely for its strong periodicity. To fully

demonstrate the data characteristics, we choose six days’

transactions from Didi Chuxing dataset and plot the hourly

taxi demand from 7:00 a.m. to 23:00 p.m. in the heart of

Chengdu, China (Fig. 4). The practical demand trend not

only reflects the correlation among adjacent timestamps,

but also presents periodic change. The periodic interval can

be diverse. When the interval is a day, i.e., 24 h, we can

observe that demand values are quite similar at the same

time point every day, such as the rush hours and the off-

peak hours. When the interval is set to a week, the demand

trends share even more similarity. For example, on Satur-

days (Nov 12th and Nov 19th, 2016), the taxi demands at

1T Pz 1T P1T PT P1

poolF

( ) ( 1) | |, ,...t t T V PX X 1) | |V P1) | |1) | |V PV P1) | |1) | |1) |

LSTM LSTM  · · · LSTM

'K
pool GCF F

attn
F

Ts T

( ) ( 1) | |, ,...t t T V PX X 1) |1) |1) |1) |1) |( ) ( 1) |1) |( ) ( 1) |( ) ( 1) |1) |1) |1) |1) |1) |1) |1) |, ,...( ) ( 1) |1) |1) |1) |, ,...( ) ( 1) |( ) ( 1) |( ) ( 1) |( ) ( 1) |1) |1) |1) |1) |1) |( ) (( ) (( ) (( ) (( ) (( ) (,,( ) (( ) (( ) ( 1) | |V P1) | |1) | |V PV P1) | |1) | |1) |

Contextual Gating

T
T

T reweighted observations 

Share-weight LSTM 

V

T observations

LSTM

Contextual 
Gating

LSTM

Contextual 
Gating

Contextual Gated LSTM

Contextual Gated LSTM
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periodic observations

T

T-1

T-2

T-3

···

T-p

···
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···

T-3p

···
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(a)

(b)

Fig. 3 Temporal correlation

modeling of DTG-MGCN.

(a)The framework of dual

temporal branches. We select

the previous observations and

periodic observations from

historical sequence as input to

CGRNN, respectively. And the

resulting features are combined

through weighted sum. (b) The

detailed structure of CGRNN. It

first generates the place

descriptions using global

pooling over the historical

observations and its

neighborhood information.

Then, it turns the extracted

contextual information into a

summarized vector z. The gated

mechanism is operated by

reweighting the original input

sequence with z. Finally, the

gated sequence is fed to a shared

LSTM over all places
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normal morning peak around 8:00 a.m. are clearly lower

than those on Thursdays and Fridays. This is because

Saturday is the rest day for most people. While at the

evening peak around 17:00 p.m., people are likely to go out

for recreational activities, the request orders are slightly

more than those on weekdays. Apparently, the observations

from periodic timestamps play an important role in

expressing the dynamic patterns of taxi demands. There-

fore, we add another CGRNN branch taking periodic data

as input.

HPG
i;: ¼ LSTMð ~Xðt0Þ

i;: ;
~X
ðt0þpÞ
i;: ; ~X

ðt0þ2pÞ
i;: ;

. . .; ~X
ðT�pÞ
i;: ; ~X

ðTÞ
i;: ;W4Þ

ð17Þ

where p is the periodic interval, which can be set as a day, a

week and so on according to the data characteristics.

Subsequently, we need to produce the final temporal

encoded feature HD
i;: by merging the output from dual

branches.

HD
i;: ¼ WGHG

i;: þWPGHPG
i;: þ b ð18Þ

4 Experiment

4.1 Dataset

We perform experiments on two open real-life ride request

datasets from leading mobile transportation platform Didi

Chuxing1 in two cities, Chengdu and Haikou, China. Both

datasets include the order ID, the start time and stop time of

the ride and the geographic coordinates of the pick-up and

drop-off location (Tables 1, 2), with a slight difference in

field format and field type. The Chengdu dataset is col-

lected from November 1st to November 30th in urban area.

We select the last week of a month as the test set and the

rest is training set. The last 10% of the training set is used

for validation. The Haikou dataset ranges from May 1st to

October 31st in 2017. Data from May 1st to August 31st is

for training, from September 1st to September 30th is for

validation, and from October 1st to October 31st is for

testing. The length of the time interval is set as half an

hour. We define study area as the urban area of the two

cities according to the data distribution.

The POI dataset used for places definition and correla-

tion modeling is collected from Baidu, a major source of

location data. The functional categories contain canteen,

company, financial services, and so on. We call the Geo-

coder API to get the business area that each point belongs

to, most of which are the well-known place names. The

obtained place areas are considered as basic study units.

Available street view images can be categorized as static

images and panorama. Due to the serious distortion of

panorama, we collected a total of 111,008 static street view

images from Tencent, a widely accepted service provider

in China. The locations of street view images lie along the

streets and do not distribute at same interval. They

dynamically change with the street density and the imaging

conditions of moving cars. Therefore, traditional sampling

at regular intervals will cause data loss or data duplication.

To solve this problem, we adopted grid searching method

to collect a set of ID of street view images without repe-

tition. Four images were downloaded at every location

from different horizontal viewing angles, i.e., 0�,90�, 180�

and 270�, each with a resolution of 608� 1110 (Fig. 5).

4.2 Experimental settings

In the experiment of identifying places’ footprints, the

coefficient k in adaptive kernel density estimation is set to

5. Divergence s in fuzzy method is 3, and middle point m is

equal to 0.1 for Chengdu dataset and 0.3 for Haikou

dataset, respectively. The places’ boundaries are delineated

with a membership threshold as 0.5.

To better explore the model without auxiliary data, the

input of DTG-MGCN is only the taxi demand at corre-

sponding time point. In the multi-graph convolution,

f ðA; hiÞ in Eq. 9 is chosen as the Chebyshev polynomial

function of the graph Laplacian in ChebNet [47] with the

degree K being 2 and the time complexity being O(n).

Aggregation function
S

is chosen to be the sum function.

In the temporal gated branches, the graph convolution

degree K 0 is set to 1. We take the previous 8 time intervals,

i.e., 4 hours, as the previous timestamps input. The periodic

interval is set to one day for Chengdu and one week for

Haikou according to their data size. The number of hidden

layer is 3, with 64 hidden units each. We also apply an L2

regularization with a weight decay equals being 1e-4 for

each layer.

ReLU is used as the activation in the network, and the

learning rate of DTG-MGCN is set to 1e-4. The network is

Fig. 4 The number of taxi demands w.r.t. different hours and days

1 https://gaia.didichuxing.com
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trained using the Adam [60] optimizer for minimizing root-

mean-square error (RMSE). We implement the model by

Tensorflow [61] on Python 3.6, based on the existing

benchmark GCN [62]. The experiments were conducted on

Intel Core i7-8700K CPU and a single NVIDIA GeForce

GTX 1070 Ti. The training of DTG-MGCN took 220MB

RAM and 7GB GPU memory. It took 1 h to train on

Chengdu dataset and 5.5 h to train on Haikou dataset,

respectively.

4.3 Visualization of extracted places

The extraction results are shown in Fig. 6. We can see that

the extraction method can deal with multi-place point sets

properly and possess excellent adaptability to diverse point

distribution. It avoids the oversimplification, meanwhile

gives a crisp boundary, and provides a better understanding

of the places’ footprints under commercial context.

We extracted 166 places in Chengdu and 63 places in

Haikou. The extracted places in Chengdu are concentrated

at the center of the city, and places around the edges are

relatively larger. Places distribute in a more organized

pattern in Haikou. Small overlap exists among the places

because extents of some business areas are originally set to

be overlapped by map provider. These delineated polygons

cover the urban areas where names are broadly known and

used in the locals’ daily lives, including residential area,

business area, transportation hubs, historic sites with their

surrounding area and so on.

4.4 Performance evaluation

4.4.1 Evaluation metric

We use root-mean-square error (RMSE) and mean absolute

percentage error (MAPE)2 to evaluate the performance of

our model, which are defined as follows.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

t¼1

�
XðtÞ � X̂

ðtÞ�2
vuut ð19Þ

MAPE ¼ 1

N

XN

t¼1

����
XðtÞ � X̂

ðtÞ

XðtÞ

���� ð20Þ

where XðtÞ and X̂
ðtÞ

denote the real value and prediction

value at timestamp t, and N represents the total number of

samples.

Fig. 5 The acquisition of street view images

Table 1 Data structure of

Chengdu ride request data
Field Type Sample Comment

Order ID String mjiwdgkqmonDFvCk3ntpron5mwfrqvI Anonymized

Ride start time Int 1501581031 Unix timestamp, in seconds

Ride stop time Int 1501582195 Unix timestamp, in seconds

Pick-up longitude Float 104.11225 GCJ-02 coordinate system

Pick-up latitude Float 30.66703 GCJ-02 coordinate system

Drop-off longitude Float 104.07403 GCJ-02 coordinate system

Drop-off latitude Float 30.68630 GCJ-02 coordinate system

Table 2 Data structure of

Haikou ride request data
Field Type Sample Comment

order_id Int 17592719043682 Anonymized

arrive_time String 2017-05-19 01:09:12 Date and time format as YYYY-MM-DD HH:MM:SS

departure_time String 2017-05-19 01:05:19 Date and time format as YYYY-MM-DD HH:MM:SS

starting_lng Float 110.3665 GCJ-02 coordinate system

starting_lat Float 20.0059 GCJ-02 coordinate system

dest_lng Float 110.3645 GCJ-02 coordinate system

dest_lat Float 20.0353 GCJ-02 coordinate System

2 Following the practice in [32], the samples with demand values less

than 10 are filtered when computing MAPE.
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4.4.2 Methods for evaluation

We compare the proposed model (DTG-MGCN) with the

following baselines.

Historical Average (HA) [63]: Historical average pre-

dicts the demand using the mean of the historical obser-

vations in the relative same time interval, i.e., the same

time at a day.

LASSO and Ridge [64]: Linear regression takes the

previous demand at different timestamps as input. We

considered different versions of linear regression, including

LASSO with L1 regularization and Ridge regression with

L2 regularization.

Gradient Boosting Machine (GBM): LightGBM [65] is a

gradient boosting framework that uses tree-based learning

algorithm. It is designed with high efficiency for large-

scale data. We set the number of trees as 50, the maximum

depth as 4 and the learning rate as 2e-3.

LSTM [66]: As a variant of RNN, LSTM introduces

several gates to further control the flow of information and

allows the recurrent layer to capture the long-term

dependencies.

Long- and short-term time-series network (LSTNet)

[67]: LSTNet is a multivariate time-series prediction

model, which combines both CNN and LSTM to memorize

the historical information and leverages the traditional

autoregressive model to tackle the scale-insensitive prob-

lem of the neural network.

ST-MGCN [34]: The network combines the multi-graph

convolution with contextual temporal learning for spa-

tiotemporal taxi demand prediction.

Trying best to ensure all methods operate under the

same condition, we also consider both the previous and

periodic data as independent variable in linear regression

and GBM. All methods are run five times, and the best

performances are reported in the results.

4.4.3 Performances analysis

Table 3 shows the quantitative results of different fore-

casting methods on test set. We can obtain the following

observations from the table. (1) Linear regression and

almost all machine learning methods outperform the HA

method. However, LSTM has poor performance on

Chengdu dataset with only previous observations as input.

We can infer that the periodic pattern is important for

predicting Chengdu taxi demand. (2) When considering

dual temporal inputs, the advantage of traditional machine

learning over linear regression is not so obvious. The linear

regression reaches the same level of performance as GBM

on both ride request datasets and achieves the best RMSE

on Chengdu dataset. Besides, the poor performance of

LSTNet indicates that the multivariate time-series predic-

tion strategy is not suitable for multi-place taxi demand

prediction. (3) DTG-MGCN outperforms other methods

with graph-based deep learning framework, especially on

large-scale Haikou dataset. Recalling the original

(a)

(b)

Fig. 6 Results of place identification. a The 166 places in Chengdu

metropolitan area. Some representative places are highlighted,

including historic sites a Du Fu’s thatched cottage and b Wuhou

Temple, business areas c Chunxi Road, transport hubs (D) North

Station and e East Station, residential areas f Balizhuang and

university g Southwest Jiaotong University. b The 63 places in

Haikou urban area, including business areas a Jiefang West Road and

b Pearl Square, residential areas c Longkun South Road and

d Chengxi Road, and commercial districts e Guomao and f Guoxing
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experiment of ST-MGCN was also implemented on large

dataset ranging from March 1st to December 31st in 2017

[34], this may enlighten us that the learning-based method

needs considerable data scale to support the parameter size

and improve the robustness. Besides, with an additional

periodic branch, DTG-MGCN also has prediction

improvement compared to ST-MGCN.

Effect of periodic input To further explore the effect of

the periodicity of data, we input data in three different

temporal patterns to linear regression and GBM, namely

previous-only (P1) , periodic-only (P2) and previous-peri-

odic (P3). Based on the structure of ST-MGCN and DTG-

MGCN, we can infer the same pattern for MGCN-based

methods. ST-MGCN with previous data input corresponds

to P1. We modify temporal input of ST-MGCN as periodic

data for P2 as well, denoted by ST-MGCN(P2). DTG-

MGCN with dual temporal branches matches P3. The

periodic intervals keep the same, i.e., a day for Chengdu

dataset and a month for Haikou dataset. Comparison results

of both datasets are shown in Tables 4 and 5.

We can observe that the dependencies between input

data pattern and the prediction results vary in different

datasets. Comparing the P1 and P2 pattern on Chengdu

dataset, all methods tend to achieve better performance on

periodic-only pattern, which demonstrates strong data

periodicity. However, on Haikou dataset, more reliable

results are generated through the previous data input and it

seems less helpful to use periodic data only.

Although the datasets possess different properties, it is

clear that all methods with combination input (P3) gain the

best results. It shows the necessity of considering both the

previous data and periodic data simultaneously in taxi

demand prediction. This kind of combination enhances the

robustness of the model, no matter the dataset are more

independent on data at previous or periodic timestamps. In

relatively simple models such as linear regression, we can

turn the combination into parallel independent variables.

And in more sophisticated models, like MGCN-based

method, dual temporal branches in DTG-MGCN are more

helpful to capture the temporal features accurately.

In addition, we can observe that MGCN-based methods

can always outperform over all patterns, which further

proves their stability at various data scales.

Effect of different periodic intervals We further inves-

tigate the effect of choosing different periodic intervals. To

ensure adequate data for training, we only conducted the

comparison on Haikou dataset. From intuitive knowledge,

if we want to predict the taxi demand at 10:00 a.m. Friday,

it is more likely to have a closer result by referring to the

demand at 10:00 a.m. on weekdays, especially last Fridays.

Therefore, we mainly chose two periodic intervals, i.e., a

day and a week. Specifically, historical observations were

input to DTG-MGCN at the same time every day within a

week (e.g., 10:00 a.m. from last Thursday to this Thurs-

day), or the same time on the same day of the week within

a month (e.g., 10:00 a.m. on every Friday within four

weeks). We also tried to remove the previous temporal

branch, as the P2 input pattern mentioned above, to see

how different periodic intervals work independently, indi-

cated as P2-day and P2-week. Experiment results are

shown in Table 6.

We can see that periodic-only pattern does not work

well on Haikou dataset. However, with the dual temporal

gated branches, the error decreases greatly. When the

periodic interval is set as a week, the model performs best,

which indicates that data at the same time on ‘‘every Fri-

day’’ have more significance to the prediction.

Effect of multi-graph construction To study the effect of

multi-graph construction in spatial correlation modeling,

several variants of DTG-MGCN were evaluated by

removing different graphs from the model. Considering the

neighborhood graph is the basic correlation of graph

modeling in geographical study, we mainly remove the

other two graphs. The results are shown in Table 7. Both

the functional similarities graph and the landscape simi-

larities graph have positive effects to improve the predic-

tions. Multi-graph construction successfully encoded the

region-wise correlation in different aspects.

4.5 Visualization of demand prediction results

In order to give intuitive presentation, we randomly

selected a weekday in Chengdu dataset and depicted the

prediction results at different timestamps in Fig. 7. The

transition from blue to red denotes the taxi demand goes

from low to high. From the figure, observations can be

drawn as follows.

Figure 7a shows the demand during 7:00-7:30 in the

morning. People tend to transit to work during this period.

Table 3 Performance comparison of different methods for taxi

demand prediction

Method Chengdu Haikou

RMSE MAPE(%) RMSE MAPE(%)

HA 9.81 20.45 19.17 26.97

LASSO 8.22 18.55 15.51 28.06

Ridge 8.21 18.58 15.51 28.11

GBM 8.31 18.04 15.28 27.54

LSTM 12.04 25.35 16.61 30.18

LSTNet 9.76 22.09 16.36 28.39

ST-MGCN 9.27 20.55 14.98 25.45

DTG-MGCN 8.58 17.59 14.50 24.76
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Demands are low in most places except the business area

Jianshe Road and residential area Sima Bridge.

Figure 7b shows the demand during 14:00-14:30 after

lunch. Locals continue to leave for work or recreational

activities. We can see the demands keep going higher in

Jianshe Road and Sima Bridge; meanwhile, other places of

the city are awaken. Demands in Chunxi Road, the well-

known commercial pedestrian street, go higher sharply.

And more request orders also appear in the area centered

around Southwest Jiaotong University.

According to Fig. 7c, demands during 21:00–21:30 p.m.

still remain a high level in Chunxi Road and Jianshe road.

It can be inferred that people want to go home or relax

themselves in entertainment areas after a long and difficult

workday.

5 Conclusion

In this paper, we introduced a deep learning model, DTG-

MGCN, to model the spatiotemporal dependencies for taxi

demand prediction. Using a fuzzy set method based on

adaptive kernel density estimation, we defined the study

units as places with specific semantic and humanistic

experiences. The proposed model encoded different non-

Euclidean correlations with graphs and better utilized the

data periodicity with dual temporal gated branches.

Experiments on two real-word datasets showed the effec-

tiveness of our model comparing to several baselines. Taxi

demand forecasting is crucial to efficient distribution of

traffic resources for future smart cities. For future work, we

plan to investigate more aspects including (1) evaluate the

model with more time-related auxiliary data, such as

weather and holiday events; (2) explore more possibilities

in the graph correlation types; (3) extend the model for taxi

origin–destination prediction problem.

Table 4 Effect of periodic input

on Chengdu dataset
Method RMSE MAPE(%) RMSE MAPE(%) RMSE MAPE(%)

P1 P2 P3

LASSO 13.49 27.45 8.46 18.92 8.22 18.55

Ridge 13.48 27.59 8.45 18.95 8.21 18.58

GBM 12.41 26.09 8.63 18.31 8.31 18.04

ST-MGCN ST-MGCN(P2) DTG-MGCN

MGCN-based method 9.27 20.55 8.83 18.07 8.58 17.59

Table 5 Effect of periodic input

on Haikou dataset
Method RMSE MAPE(%) RMSE MAPE(%) RMSE MAPE(%)

P1 P2 P3

LASSO 16.75 31.38 20.41 32.49 15.51 28.06

Ridge 16.76 31.43 20.42 32.52 15.51 28.11

GBM 16.51 30.20 20.06 31.88 15.28 27.54

ST-MGCN ST-MGCN(P2) DTG-MGCN

MGCN-based method 14.98 25.45 19.70 33.10 14.50 24.76

Table 6 Effect of different periodic intervals on Haikou dataset

Method RMSE MAPE(%)

ST-MGCN(P2-day) 19.75 29.63

ST-MGCN(P2-week) 19.70 33.10

DTG-MGCN(day) 17.90 29.11

DTG-MGCN(week) 14.50 24.76

Table 7 Effect of multi-graph

construction on Chengdu

dataset

Method RMSE MAPE(%)

DTG-MGCN (neighborhood) 8.69 18.11

DTG-MGCN (neighborhood and functional similarities) 8.60 17.73

DTG-MGCN (neighborhood and landscape similarities) 8.58 18.06

DTG-MGCN (neighborhood, functional and landscape similarities) 8.58 17.59
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