elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Comparing Photorealism in Game Engines for Synthetic Maritime Computer Vision Datasets

Sharma, Kashish und Carrillo Perez, Borja Jesus und Barnes, Sarah (2024) Comparing Photorealism in Game Engines for Synthetic Maritime Computer Vision Datasets. In: 4th European Workshop on Maritime Systems, Resilience and Security 2024 (MARESEC 24). 4th European Workshop on Maritime Systems, Resilience and Security 2024 (MARESEC 24), 2024-06-06 - 2024-06-07, Bremerhaven, Deutschland. doi: 10.5281/zenodo.14214926.

[img] PDF
15MB

Offizielle URL: https://zenodo.org/records/14214926

Kurzfassung

Computer vision for real-world applications faces data acquisition challenges, including accessibility, high costs, difficulty in obtaining diversity in scenarios or environmental conditions. Synthetic data usage has surged as a solution to these obstacles. Leveraging game engines for synthetic dataset creation effectively enriches training datasets with increased diversity and richness. The choice of the game engine, pivotal for generating photorealistic simulations, may influence synthetic data quality. This study compares Unity Engine's and Unreal Engine's capabilities in generating synthetic maritime datasets to support ship recognition applications. To this end, the realworld maritime dataset ShipSG has been replicated in the corresponding game engines to create the same scenarios. The performance of the generated synthetic datasets is benchmarked against the real-world ShipSG dataset using the object recognition model YOLOv8. Furthermore, the comparison evaluates various photorealistic parameters found in the dataset images to determine the optimal configuration for improving performance with YOLOv8. The datasets generated using the Unity Engine, with all photorealistic effects present and the one with no lens distortion, achieved the highest accuracy in ship recognition with a mAP of 72.3%. Both configurations of the synthetic datasets were utilised to augment the ShipSG dataset to train YOLOv8. The configuration with all photorealistic parameters in place provides the highest mAP increase, of 0.4% compared with YOLOv8 performance on ShipSG when no synthetic data is used. This evidence underscores that utilising game engines can effectively support and enhance ship recognition tasks.

elib-URL des Eintrags:https://elib.dlr.de/211642/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Comparing Photorealism in Game Engines for Synthetic Maritime Computer Vision Datasets
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Sharma, Kashishkashish (at) uni-bremen.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Carrillo Perez, Borja JesusBorja.CarrilloPerez (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Barnes, SarahSarah.Barnes (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Erschienen in:4th European Workshop on Maritime Systems, Resilience and Security 2024 (MARESEC 24)
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.5281/zenodo.14214926
Status:veröffentlicht
Stichwörter:Synthetic Data Generation, Game Engines, Photorealism, Maritime Computer Vision, YOLOv8
Veranstaltungstitel:4th European Workshop on Maritime Systems, Resilience and Security 2024 (MARESEC 24)
Veranstaltungsort:Bremerhaven, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:6 Juni 2024
Veranstaltungsende:7 Juni 2024
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:keine Zuordnung
DLR - Forschungsgebiet:keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):keine Zuordnung
Standort: Bremerhaven
Institute & Einrichtungen:Institut für den Schutz maritimer Infrastrukturen > Maritime Sicherheitstechnologien
Hinterlegt von: Carrillo Perez, Borja Jesus
Hinterlegt am:14 Jan 2025 08:10
Letzte Änderung:29 Jan 2025 13:27

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.