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Abstract— Computer vision for real-world applications faces

data acquisition challenges, including accessibility, high costs,

difficulty in obtaining diversity in scenarios or environmental

conditions. Synthetic data usage has surged as a solution to

these obstacles. Leveraging game engines for synthetic dataset

creation effectively enriches training datasets with increased

diversity and richness. The choice of the game engine, pivotal

for generating photorealistic simulations, may influence synthetic

data quality. This study compares Unity Engine’s and Unreal

Engine’s capabilities in generating synthetic maritime datasets

to support ship recognition applications. To this end, the real-

world maritime dataset ShipSG has been replicated in the

corresponding game engines to create the same scenarios. The

performance of the generated synthetic datasets is benchmarked

against the real-world ShipSG dataset using the object recog-

nition model YOLOv8. Furthermore, the comparison evaluates

various photorealistic parameters found in the dataset images to

determine the optimal configuration for improving performance

with YOLOv8. The datasets generated using the Unity Engine,

with all photorealistic effects present and the one with no lens

distortion, achieved the highest accuracy in ship recognition with

a mAP of 72.3%. Both configurations of the synthetic datasets

were utilised to augment the ShipSG dataset to train YOLOv8.

The configuration with all photorealistic parameters in place

provides the highest mAP increase, of 0.4% compared with

YOLOv8 performance on ShipSG when no synthetic data is

used. This evidence underscores that utilising game engines can

effectively support and enhance ship recognition tasks.

Index Terms—Synthetic Data Generation, Game Engines, Pho-

torealism, Maritime Computer Vision, YOLOv8

I. INTRODUCTION

The field of computer vision has witnessed significant ad-
vancements, driven by the availability of large-scale datasets.
Ideally, these datasets contain images that capture real-world
events and occurrences. However, acquiring images of events
in action is not always possible. Factors like the cost of
data acquisition, along with privacy and ethical considerations,
hinder dataset creation. In the maritime domain, the logistical
and environmental challenges add to the problems associated
with data acquisition. [1]

Synthetic datasets have emerged as a promising alternative,
wherein the limitations associated with data acquisition can be
overcome [2]. Synthetic datasets offer the ability to generate
datasets on demand, allowing scalability, reproducibility and
customisation [3]. However, before utilising such datasets in
computer vision tasks, selecting the right tool for generation is
crucial. Earlier, the synthetic datasets in computer vision were
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generated by crafting or staging simulated real scenarios [4]
[5]. Recently, game engines have emerged as the favoured
platform for generating and simulating real-world scenarios [6]
[7]. However, the rationale or criteria for selecting a specific
game engine for synthetic data generation in computer vision
applications has not been defined in the literature. The works
that specified their choice, called out their familiarity or the
ease of use with that engine [8] [9] , the choice of the game
engine has not been qualitatively analysed in the literature.

This work quantitatively compares the efficacy of two popu-
lar game engines1; Unity Engine [10] and Unreal Engine [11],
in generating photorealistic synthetic datasets for maritime
ship segmentation. The maritime computer vision dataset en-
hances situational awareness by enabling information extrac-
tion for infrastructure protection and implementing measures
to address threats [12]. For a better understanding of the
effects of photorealism in synthetic data that most impact our
maritime computer vision task of ship segmentation, various
simulation parameters are varied, and the resulting model
precision is compared. We evaluate each synthetic dataset by
analysing the mean Average Precision (mAP) achieved by an
object detector trained on real images. Subsequently, we select
the configuration with the highest mAP to augment model
training data to observe the impact of the addition of synthetic
data to the training dataset. This investigation aims to guide
future synthetic dataset creation efforts, and lay down the
foundation for the use of game engines as a tool for creating
synthetic datasets, ensuring an optimised training environment
for computer vision applications in the maritime domain and
beyond.

II. SYNTHETIC DATA GENERATION AND GAME ENGINES

In Section II-A, we present the maritime dataset selected
for this study. Subsequently, in Section II-B, we detail the
process of constructing a true-to-scale model of the real-world
location, which will be used for generating synthetic datasets
discussed in Section II-C.

A. The ShipSG Dataset

The maritime domain requires images from real-world that
showcases varied ship data with precise annotations including
the ship class, masks and features like geographical coordi-
nates. Existing datasets like, Singapore Maritime Dataset [13],
SeaShips [14] suffer from a lack of annotations for instance

1Link:https://www.slashdata.co/post/did-you-know-that-60-of-game-
developers-use-game-engines, accessed on 22.07.2024
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(a) Google Maps - Top View [15] (b) Doppelschleuse Model - Top View in Blender

Fig. 1: Top View of the Doppelschleuse

segmentation, limited diversity in ship types, and absence
of a favourable oblique view, all of which complicate the
process of geo-referencing. To overcome these obstacles, the
ShipSG dataset [12] for ship segmentation and geo-referencing
available in the public domain was created. The images
in the dataset (Fig. 3a) showcase the Doppelschleuse, port
basin in Bremerhaven, Germany. The dataset consists of 3505
images with static and oblique views of the port basin and
manually annotated 11,625 ship masks grouped into seven
classes. The seven classes are Cargo, Law Enforcement, Pas-
senger/Pleasure, Special 1, Special 2, Tanker and Tug. The
dataset is split into two sets - training and validation. The
training set contains 80% of the images, while the validation
set contains the remaining 20%.

B. 3D Model Creation

To recreate the scenarios from the dataset in the game
engines, a true-to-scale model of the Doppelschleuse (Fig. 1b)
was handcrafted in the 3D modelling software Blender2. To
ensure that the 3D model of the Doppelschleuse is true
to scale, Google Maps [15], along with its measure tool,
was employed to verify the model’s adherence to real-world
proportions (Fig. 1). The area under consideration measures
1000m in length and 500m in width.

The images (Fig. 2a) in the ShipSG dataset were captured
from the rooftop of the Alfred Wegener Institute (AWI) at
the Doppelschleuse, Bremerhaven, Germany. The end of the
rooftop lies in the foreground (Fig. 2b) of the images. In
the mid-ground (Fig. 2b) lies the street, the Molenfeuer and
the Nordmole lighthouses along with the Lotsenstation. In
the background (Fig. 2b), we have distant Bremerhaven to
the right and the water body. Majority of vessel activity in
the ShipSG dataset is concentrated in the foreground and
mid-ground. Therefore, the land and the structures in the
background are omitted in the 3D model (Fig.2c).

The structures in the foreground and the mid-ground are
chosen for 3D modelling. Google Maps is used to trace the
position and orientation of the structures. Particular care was
taken to ensure that these structures displayed a high level of
detail.

2Link:https://www.blender.org, accessed on 22.07.2024

To recreate the vessels in the ShipSG dataset, we acquired
3D models of 21 vessels from Turbosquid3 that closely re-
semble those in the real dataset. The vessel models were then
scaled to match the dimensions of their real-world counter-
parts.

C. Synthetic Dataset Generation

In order to make sure that the comparison is fair for both
the game engines, a baseline criteria was set. Both game
engines should have similar rendering capabilities, using the
most recent stable versions and to utilise the add-ons that
are provided only by the developers. Based on this, Unity
Engine HDRP 2023.2 and Unreal Engine 5.3 are selected for
comparison.

To ensure real scenarios are replicated, we selected 52
images from the validation set of the ShipSG dataset, for re-
construction using game engines. These images depict various
scenarios, including diverse times of day, lighting and foggy
conditions, and different vessel types. The 3D Doppelschleuse
model and the vessel models were imported into both game
engines.

To analyse the significance of the photorealistic effects that
contribute in making synthetic images appear photoreal, six
effects were identified from the real images. The effects are:

1) All effects present (sun light, water body, lens distortion
and colours) (Fig. 7a in Appendix)

2) Absence of directional light (sun light) (Fig. 7e in
Appendix and Fig. 4)

3) Absence of the water body (Fig. 7f in Appendix and
Fig. 4)

4) Absence of lens distortion (lens correction) (Fig. 7b in
Appendix and Fig. 4)

5) Absence of colour (monochromatic images) (Fig. 7c in
Appendix)

6) Replacing the water body with a plane surface (Fig. 7g
in Appendix)

The first configuration depicts all the effects of the ShipSG
image, making it as close to a true representation as was
possible, given the constraints of this work. In configurations 2
to 5, individual effects were omitted to assess the importance

3Link:https://www.turbosquid.com, accessed on 12.07.2024
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(a) Image from ShipSG dataset (b) Key Structures in ShipSG image:
Foreground - Green, Midground - Blue,
Background - Yellow

(c) View of the Doppelschleuse in
Blender

Fig. 2: Identifying the key structures in the ShipSG dataset

(a) ShipSG Sample Image (b) Sample Image - Unity Engine (c) Sample Image - Unreal Engine

Fig. 3: Example of ShipSG image with the rendered synthetic images

Fig. 4: Photorealism Effects in the ShipSG dataset

of each photorealistic effect, using the first configuration as
the baseline. Simulating a water body is a challenging task
because of the complexity involved in accurately mirroring
the properties of water. The last configuration aims to study
the impact of water properties and the importance of using a
simulated water body. Substituting the water body with a plane
surface eliminates the properties of water, such as reflection,
water waves, and physics, but provides a representation of the
water surface.

Each of the six scenarios were generated independently for
each game engine. This approach enables us to qualitatively
assess the impact of these effects on ship segmentation.

After generating 52 synthetic images for each photorealistic
effect in every game engine, annotation masks are needed to
evaluate the performance of the instance segmentation method.
Unity engine offers an annotation toolkit called the Perception
Package [16]. Unreal engine does not have its annotation
toolkit. Thus, the synthetic images from the Unity engine
were annotated twice, once manually, and the second time
with the Perception Package. For Unreal engine, only manual
annotation is utilised.

The rendered synthetic images from both the game engines
replace their equivalent real images in the validation set of
the ShipSG. Thus, there are three combinations with the
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generation and annotation of synthetic datasets:
a) images from Unity engine manually annotated (Fig. 6c)
b) images from Unity engine auto-annotated (Fig. 6a)
c) images from Unreal engine annotated manually

The six photorealistic effects described above are applied
to the three combinations of synthetic dataset generation-
annotation. Altogether, 18 synthetic datasets were generated
to evaluate the effects that contribute to making the synthetic
images photorealistic.

III. RESULTS AND DISCUSSION

The performance of the synthetic datasets generated in
Section II-C is evaluated in Section III-A. The top-performing
synthetic dataset is then selected for data augmentation in
Section III-B.

A. Validation Results

In reference [17], YOLOv8 [18] was utilised for ship
segmentation and geo-referencing using the ShipSG dataset.
YOLOv8 is a state-of-the-art real-time computer vision model
built upon previous YOLO (You Only Look Once) [19]
versions. YOLOv8 architecture provides support for ob-
ject detection and instance segmentation amongst other fea-
tures. YOLOv8 offers customisation of the architecture along
with five model sizes. The models range from the fastest
and lightest to the deepest and most precise: YOLOv8n,
YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. In this
work, YOLOv8x has been chosen for its accuracy and high
performance on the ShipSG dataset.

Mean Average Precision (mAP) is a widely used metric
in computer vision to evaluate the precision of a model’s
object detection and instance segmentation capabilities. It is
computed by averaging the precision across all classes, where
precision is defined as the ratio of true positive detections
over the sum of true positive and false positive detections.
True positives are determined by whether the Intersection over
Union (IoU) between the predicted and ground truth bounding
boxes or instance masks exceeds a certain threshold. The IoU
for instance segmentation, is calculated as:

IoU =
area(Mpred →Mgt)

area(Mpred ↑Mgt)
(1)

where Mpred and Mgt represent the predicted and ground
truth masks, respectively.

The Average Precision for each class i is then computed by
summing the precisions at different IoU thresholds:

APi =
∑

t→T

p(t)!t (2)

In this formula, T is the set of IoU thresholds (normally
from 0.5 to 0.95), p(t) is the precision at threshold t, and !t
is the difference between consecutive IoU thresholds (normally
0.05).

Finally, the mAP is the mean of the AP values for all
Nclasses classes:

mAP =
1

Nclasses

Nclasses∑

i=1

APi (3)

Instance segmentation using YOLOv8x performed on the
ShipSG for the segmentation and classification of ships yields
a mean Average Precision (mAP) of 76.5% [17]. This perfor-
mance value serves as the benchmark for the evaluation of
synthetic dataset performance. The weights trained on the real
ShipSG training set are now used to validate the generated
sets which contain the above described synthetic images. A
summary of the validation result is seen in Table I. As it can
be seen from Table I, none of the synthetic datasets surpass
the mAP 76.5% of the real dataset, because the YOLOv8x was
trained and validated on real images. This experiment aims not
to match the baseline mAP, but rather to identify the synthetic
image configuration that achieves the mAP closest to that of
the real dataset. In this context, Unity Engine with manual
annotation with all effects present and without lens distortion
performs the best. Both achieve a mAP of 72.3%. The perfor-
mance of Unreal Engine is consistently high, but it does not
surpass Unity Engine’s best. Unity Engine’s performance with
auto annotation experiences a decline of nearly 10% compared
to the ones annotated manually, highlighting the significant
role annotations play. Unity Engine’s auto annotation toolkit
provides pixel-precise annotation but also annotates the vessel
hull that is submerged in water (Fig. 6a). The ground truth
annotations (Fig. 5a) in the reference model took into account
only the portion of the vessels which were above water and
so the two annotation styles (Fig. 5a and 5c) are not mutually
compatible. Therefore, the automatic annotation scheme is not
suitable for this work.

Table I highlights the significance of incorporating photo-
realistic effects in synthetic images. The results consistently
demonstrate that more realistic images achieve better mAP,
thereby confirming that photorealism is crucial for the perfor-
mance of the associated model. Removal of the directional
light (sun light), changing the chromaticity by making the
images monochrome and the removal of the lens distortion
does not improve the performance of the synthetic datasets.
The removal of the water body reduces the mAP across all
three dataset types. The improvement in the performance
(in comparison to the absence of a water body) when a
plane surface is introduced as a replacement for the water
surface, showcases the importance of a water body in syn-
thetic maritime dataset. Thus, Unity Engine dataset, with all
photorealistic effects and without lens distortion, emerges as
the clear standout in this experiment.

B. Data Augmentation Experiment
For data augmentation experiment, Unity Engine dataset,

with all photorealistic effects and without lens distortion are
chosen. The goal of this experiment is to determine whether
the inclusion of synthetic data when training the models leads
to a higher mAP.

The synthetic images from the best performing synthetic
dataset are added to the training set of the ShipSG dataset.
Since the synthetic images replicate 52 images from the real
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(a) Ground Truth - Auto Annotation (b) Sample Image (c) YOLOv8x Predicted Mask

Fig. 5: Ground Truth and Predicted Mask - Unity Engine

mAP (%)

Configuration Unreal (manual ann.) Unity (auto ann.) Unity (manual ann.)

All effects 71.7 62.7 72.3

No directional light 71.5 62.0 69.3
No water body 71.5 62.7 69.3

No lens distortion 71.3 63.7 72.3

Monochromatic 71.0 62.3 69.6
Plane surface for water body 72.0 62.2 69.6

TABLE I: Validation results of YOLOv8x trained on the synthetic datasets

validation set, the corresponding real images from the valida-
tion set are removed. Consequently, the training set comprises
of 2856 images (2804 original + 52 synthetic), while the
validation set contains 649 images (instead of the original
701). Additionally, the annotations of the synthetic images
have been added to the training set. The experiment is repeated
two times, once with each of the best candidate obtained
from the previous experiment. YOLOv8x is trained with the
two new synthetic datasets under the same initial conditions
presented in [17]. This allows for a direct comparison of the
training results.

YOLOv8x training mAP (%)

Original ShipSG [17] 76.5
Unity Engine (manual ann.& all effects) 76.9

Unity Engine (manual ann. & no lens distortion) 76.7

TABLE II: Results of the Data Augmentation Experiment after
training YOLOV8x with and without synthetic images.

Following the training of the YOLOv8x on the new datasets,
the configuration with all effects present exhibits an increase
of 0.4% (Table II) compared to the performance of the ShipSG
without the synthetic images. The dataset without the lens dis-
tortion presents an increase of 0.2% mAP. The modest increase
indicates that including additional synthetic data during model
training can lead to higher mAP scores, demonstrating that
synthetic data has the potential to significantly enhance results
for real-world maritime computer vision.

IV. CONCLUSION

In this paper we compare the effectiveness of game en-
gines in generating synthetic datasets for the improvement of
maritime computer vision applications, particularly focusing
on the comparison between Unity Engine and Unreal Engine.
Alongside this, an exploration was conducted to study the

impact of various photorealistic effects on making synthetic
images look realistic. A true to scale model of the Dop-
pelschleuse was handcrafted in Blender. The crafted model
was set up in the respective game engines, along with the
corresponding vessel models to recreate 52 images from the
validation set of the ShipSG dataset. Unity Engine’s manually
annotated validation set with all photorealistic effects and
without lens distortion performs the best in this exploration.
The mAP achieved by these two synthetic datasets stands the
closest to that of the ShipSG. Unreal Engine’s performance is
high consistently but it isn’t able to surpass Unity Engine’s
best. The significant difference between Unity Engine with
automatic annotation and manual annotation shows the impor-
tance of consistent data labelling practices in the domain of
computer vision and machine learning. The data augmentation
experiment showcases the potential of synthetic datasets for
maritime computer vision applications. In conclusion, the
Unity Engine outperforms the Unreal Engine in generating
synthetic maritime datasets for ship recognition tasks, thereby
contributing to the enhancement of maritime awareness.

V. FUTURE WORK

The primary use case for synthetic datasets was to eliminate
the complications that arise during acquisition. Complex sce-
narios (like a stormy weather) should therefore be additionally
simulated. Investigating these aspects will help create more
complex and diverse training datasets crucial for improving
the robustness of the model. A notable insight from this work
is the impact of annotations on synthetic datasets. The auto
annotation toolkit reduces the time and effort significantly but
needs to be modified to allow custom annotation schemes
which can be tailored to match the wishes or specific needs
of the user. Another pivotal area for future research is the
importance of water physics in reconstructing real scenarios.
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The work presented a positive outcome with a few synthetic
images. To validate this result, future studies should exper-
iment by augmenting a larger set of synthetic images into
datasets.
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Fig. 7: Generated Images with various photorealistic effects - Unity & Unreal Engine


