Al-Bataineh, Bara and Paradies, Marcus and Dembska, Marta and Pohl, Matthias (2025) Optimal Model Placement in Heterogeneous Edge AI Environments. Procedia Computer Science. Elsevier. doi: 10.1016/j.procs.2025.01.252. ISSN 1877-0509. (In Press)
|
PDF
- Only accessible within DLR
- Postprint version (accepted manuscript)
287kB |
Abstract
With the rise of high-resolution sensors in Earth observation satellites, wildlife cameras, and autonomous vehicles, the volume of edge-generated data has significantly increased. Analyzing this data using Deep Learning (DL) models often requires moving it to remote computing facilities, leading to longer execution times and higher energy consumption. To minimize unnecessary data transfer, Edge AI accelerators like the Edge TPU (ETPU) offer fast, low-power inference close to data sources. However, due to limited on-chip memory and support for various neural network operations, these accelerators are often used with power-efficient CPUs in single-user, single-model scenarios. In this work, we tackle the automatic mapping of multiple DL models to heterogeneous resources (CPUs and ETPUs) for efficient inference in multi-user, multi-model environments. We present Maggie, which optimally allocates DL models to minimize latency and maximize ETPU memory utilization. Our results indicate that Maggie achieves up to 7 times lower latency compared to a CPU-only baseline and about 3 times lower latency than an ETPU-only baseline across various neural network architectures.
| Item URL in elib: | https://elib.dlr.de/211457/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Document Type: | Article | ||||||||||||||||||||
| Title: | Optimal Model Placement in Heterogeneous Edge AI Environments | ||||||||||||||||||||
| Authors: |
| ||||||||||||||||||||
| Date: | 2025 | ||||||||||||||||||||
| Journal or Publication Title: | Procedia Computer Science | ||||||||||||||||||||
| Refereed publication: | Yes | ||||||||||||||||||||
| Open Access: | Yes | ||||||||||||||||||||
| Gold Open Access: | No | ||||||||||||||||||||
| In SCOPUS: | Yes | ||||||||||||||||||||
| In ISI Web of Science: | No | ||||||||||||||||||||
| DOI: | 10.1016/j.procs.2025.01.252 | ||||||||||||||||||||
| Publisher: | Elsevier | ||||||||||||||||||||
| ISSN: | 1877-0509 | ||||||||||||||||||||
| Status: | In Press | ||||||||||||||||||||
| Keywords: | Edge TPU, Model Placement, Neural Network, Edge AI, Optimization | ||||||||||||||||||||
| HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
| HGF - Program: | Space | ||||||||||||||||||||
| HGF - Program Themes: | other | ||||||||||||||||||||
| DLR - Research area: | Raumfahrt | ||||||||||||||||||||
| DLR - Program: | R - no assignment | ||||||||||||||||||||
| DLR - Research theme (Project): | R - no assignment | ||||||||||||||||||||
| Location: | Jena | ||||||||||||||||||||
| Institutes and Institutions: | Institute of Data Science Institute of Data Science > Data Management and Enrichment | ||||||||||||||||||||
| Deposited By: | Pohl, Matthias | ||||||||||||||||||||
| Deposited On: | 06 Jan 2025 10:41 | ||||||||||||||||||||
| Last Modified: | 26 Feb 2025 14:04 |
Repository Staff Only: item control page