Qiu, Kevin and Demeur, Ewan and Piltz, Björn and Kuijper, Frido and Bulatov, Dimitri and van Persie, Mark (2024) Using road detection and OSM reference data to refine airborne camera extrinsics in the Ahr Valley flooding use case. In: Earth Resources and Environmental Remote Sensing/GIS Applications XV 2024, 13197, 131970G. SPIE. SPIE 13197, Earth Resources and Environmental Remote Sensing/GIS Applications XV, 2024-09-16, Edinburgh, United Kingdom. doi: 10.1117/12.3031525. ISBN 978-151068102-6. ISSN 0277-786X.
![]() |
PDF
- Only accessible within DLR
3MB |
Official URL: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13197.toc
Abstract
Aerial mapping provides high-resolution spatial data over large areas and is a cornerstone in urban planning, environmental monitoring and disaster management. To ensure geo-referencing and orthorectification, accurate external camera orientations (EO) are pivotal and indispensable. Often, the position and orientation data provided by the aerial platform is not accurate enough to create accurately georeferenced imagery. With our method, we improve the EO in a post-processing chain by referencing the extracted road network with the OpenStreetMap (OSM) road network. The dataset used in this paper was collected in the aftermath of the July 2021 Ahr Valley flooding disaster along the Ahr river in Germany, employing an aircraft operating at an altitude of 3000 feet. Encompassing an expansive area of 230 sq km, it includes the diverse landscapes of the Eifel mountains, urban and rural locales, as well as the inundated and devastated regions. We implement a machine learning semantic segmentation model, namely DeepLab V3+, utilizing the RGB imagery images captured by the aircraft to identify road center lines. It is necessary to employ this rather sophisticated method because traditional road detectors were thrown off by the flooded areas, increasing false positive detections and limiting the EO optimization. We compute 3D reference points from available OSM road vector data combined with digital terrain model (DTM) elevation data. Using camera intrinsics and initial values for EOs, we project the reference points into the images and compute the distance to the detected road feature points. This distance is minimized to optimize EO parameters. Subsequently, we project the images onto an ortho-mosaic using the DTM, enhancing accuracy beyond that of the raw EO data measured by the aircraft. The resulting orthophoto map is almost free of visual artifacts and accurate in terms of geolocation, and can thus be utilized for disaster response applications.
Item URL in elib: | https://elib.dlr.de/209913/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||
Title: | Using road detection and OSM reference data to refine airborne camera extrinsics in the Ahr Valley flooding use case | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 13 November 2024 | ||||||||||||||||||||||||||||
Journal or Publication Title: | Earth Resources and Environmental Remote Sensing/GIS Applications XV 2024 | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||
Volume: | 13197 | ||||||||||||||||||||||||||||
DOI: | 10.1117/12.3031525 | ||||||||||||||||||||||||||||
Page Range: | 131970G | ||||||||||||||||||||||||||||
Publisher: | SPIE | ||||||||||||||||||||||||||||
Series Name: | REMOTE SENSING | ||||||||||||||||||||||||||||
ISSN: | 0277-786X | ||||||||||||||||||||||||||||
ISBN: | 978-151068102-6 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Supervised Machine learning, Semantic segmentation, External Orientation, Registration, Optimization, Modular aerial camera system , Desaster management, Mapping | ||||||||||||||||||||||||||||
Event Title: | SPIE 13197, Earth Resources and Environmental Remote Sensing/GIS Applications XV | ||||||||||||||||||||||||||||
Event Location: | Edinburgh, United Kingdom | ||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||
Event Date: | 16 September 2024 | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Security-relevant Earth Observation, R - Optical remote sensing for security-relevant applications, R - Optical Technologies and Applications | ||||||||||||||||||||||||||||
Location: | Berlin-Adlershof | ||||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Optical Sensor Systems > Security Research and Applications | ||||||||||||||||||||||||||||
Deposited By: | Piltz, Björn | ||||||||||||||||||||||||||||
Deposited On: | 03 Dec 2024 09:20 | ||||||||||||||||||||||||||||
Last Modified: | 12 Feb 2025 13:57 |
Repository Staff Only: item control page