Mansour, Islam und Papathanassiou, Konstantinos und Haensch, Ronny und Hajnsek, Irena (2024) Hybrid Machine Learning Forest Height Estimation from TanDEM-X InSAR. IEEE Transactions on Geoscience and Remote Sensing, 63, Seite 5201411. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2024.3520387. ISSN 0196-2892.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
6MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10807371
Kurzfassung
Combining machine learning with physical models can significantly impact retrieval algorithms designed to invert geophysical parameters from remote sensing data. Such hybrid models integrate physical knowledge with domain expertise through a joint architecture, potentially enhancing performance by increasing the efficiency and flexibility of the physical model as well as the generalization and interpretability of the machine learning predictions. This work introduces a hybrid model for estimating forest height using single-baseline, single-polarization TanDEM-X interferometric coherence measurements. In this model, the vertical reflectivity profile is derived as a function of input features, including topographic and acquisition geometry descriptors, using a multilayer perceptron network. This profile is then used to invert forest height by leveraging the established physical relationship connecting the vertical reflectivity profile to forest height. The developed model is applied and validated on several TanDEM-X acquisitions over tropical sites with different acquisition geometries, and its performance is assessed against reference data derived from airborne LiDAR measurements.
elib-URL des Eintrags: | https://elib.dlr.de/209445/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Hybrid Machine Learning Forest Height Estimation from TanDEM-X InSAR | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 19 Dezember 2024 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 63 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2024.3520387 | ||||||||||||||||||||
Seitenbereich: | Seite 5201411 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | InSAR, forest height estimation, interferometry, synthetic aperture radar, TanDEM-X, remote sensing, forest height, forest structure, temporal decorrelation, topographic effects, machine learning, hybrid modeling, physical modeling. | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - TerraSAR/TanDEM, R - SAR-Methoden | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > Radarkonzepte Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||||||||||
Hinterlegt von: | Mansour, Islam | ||||||||||||||||||||
Hinterlegt am: | 07 Jan 2025 10:45 | ||||||||||||||||||||
Letzte Änderung: | 07 Jan 2025 10:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags