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Abstract— Combining machine learning (ML) with physical
models can significantly impact retrieval algorithms designed
to invert geophysical parameters from remote sensing data.
Such hybrid models integrate physical knowledge with domain
expertise through a joint architecture, potentially enhancing
performance by increasing the efficiency and flexibility of the
physical model as well as the generalization and interpretability
of the ML predictions. This work introduces a hybrid model for
estimating forest height using single-baseline, single-polarization
TanDEM-X interferometric coherence measurements. In this
model, the vertical reflectivity profile is derived as a function of
input features, including topographic and acquisition geometry
descriptors, using a multilayer perceptron network. This profile
is then used to invert forest height by leveraging the established
physical relationship connecting the vertical reflectivity profile to
forest height. The developed model is applied and validated on
several TanDEM-X acquisitions over tropical sites with different
acquisition geometries, and its performance is assessed against
reference data derived from airborne LiDAR measurements.

Index Terms— Forest height, forest height estimation, forest
structure, hybrid modeling, InSAR, interferometry, machine
learning (ML), physical modeling, remote sensing, synthetic
aperture radar, TanDEM-X, temporal decorrelation, topographic
effects.

I. INTRODUCTION

CCURATE measurements of forest height are rele-

vant for forest inventory, forest disturbance, and carbon
sequestration monitoring [1], [2], [3], [4], [5]. SAR interfer-
ometry, combined with polarimetric and/or spatial baseline
diversity, is today one of the established remote sensing
techniques for obtaining continuous forest height estimates
of significant accuracy at large spatial scales. The related
approaches are in first line model-based, exploring the inher-
ent sensitivity of interferometric measurements to the 3D
distribution of scatterers within forests. Model-based forest
height inversion performance is well-understood and validated
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across various frequencies, from the X- to P-band, for different
forest and terrain conditions [6], [7], [8], [9], [10], [11], [12].
The achieved performance critically depends on the definition
of the inversion model, particularly the parameterization of
the vertical reflectivity profile. While accurate and generic
parameterization requires a certain number of parameters to
be described, the constraint of achieving a balanced inver-
sion model dictates the number of parameters needed to
parameterize the vertical reflectivity profile to be matched by
the number of available measurements. In the absence of a
sufficient number of measurements, only oversimplified model
parameterizations become possible, or ones constrained by
overly strict assumptions, resulting in severely compromised
performance as the model loses its ability to adapt to the
underlying scattering.

A. ML Versus Physical Versus Hybrid Modeling

Both machine learning (ML) and deep learning (DL)
approaches have been in the past years applied to various
inverse remote sensing data problems with notable success.
Data-driven ML and DL approaches are able to recognize
patterns and relationships in multiparameter data spaces with
high efficiency even when these are not apparent. They are
particularly powerful when applied to parameter estimation
problems where the underlying physical relationships are not
established and/or lack a forward or inverse model description.

Following this trend, a number of ML and DL approaches
have been proposed in recent years addressing the problem of
forest height estimation from multiparameter SAR data alone
or combined with other remote sensing datasets. The majority
of them attempt to establish a direct relationship between
the measured SAR parameters as backscatter intensities or
interferometric coherences and forest height using supervised
or unsupervised learning implementations [13], [14], [15],
[16], [171, [18], [19], [20], [21], [22], [23], [24], [25].

However, although the achieved performance of such
approaches is often impressive, their generalization
and interpretability are rather limited especially in
underdetermined inverse problems addressed with limited or
even without prior knowledge and domain expertise. At the
same time, pure data-driven approaches require large amount
of reference data for a wide range of problem conditions that
are often not available.

One way to overcome these disadvantages has been pro-
posed in the context of physics-informed ML approaches
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TABLE I

TANDEM-X DATASETS, SITES, SCENE ID’Ss, HOA [M], NOMINAL INCIDENCE ANGLE [°]

No  Site Scene ID HoA 0,

1 Lopé TDMI1_SAR__COS_BIST_SM_S_SRA_20190610T173107_20190610T173115 5245  46.18
2 Lopé TDMI1_SAR__COS_BIST_SM_S_SRA_20160125T173041_20160125T173048 -65.22 4444
3 Lopé TDMI_SAR__COS_BIST_SM_S_SRA_20111002T045625_20111002T045633 86.34  46.08
4 Lopé TDMI1_SAR__COS_BIST_SM_S_SRA_20121226T045626_20121226T045634 94.89  45.10
5 Lopé TDMI_SAR__COS_BIST_SM_S_SRA_20121215T045627_20121215T045635 9541  46.68
6 Mabounié TDMI_SAR__COS_BIST_SM_S_SRA_20161017T050537_20161017T050545 -80.30  37.07
7 Mabounié TDMI_SAR__COS_BIST_SM_S_SRA_20161017T050530_20161017T050538 -80.90  37.09
8 Mabounié TDMI_SAR__COS_BIST_SM_S_SRA_20161028T050538_20161028T050546 -87.32  39.30
9 Mabounié TDMI_SAR__COS_BIST_SM_S_SRA_20161108T050538_20161108T050546 -95.81  41.39
10 Rabi TDMI1_SAR__COS_BIST_SM_S_SRA_20161017T050558_20161017T050606 -78.51  37.04
11 Rabi TDMI_SAR__COS_BIST_SM_S_SRA_20161028T050559_20161028T050607 -85.27  39.24
12 Rabi TDMI1_SAR__COS_BIST_SM_S_SRA_20161028T050552_20161028T050600 -85.95 3927
13 Rabi TDMI_SAR__COS_BIST_SM_S_SRA_20161108T050552_20161108T050600 -9421  41.37

that integrate ML and physical/mathematical models [26].
This allows to combine the expressiveness of data-based
approaches with the interpretability and generalization of
physical models. In this context, this study attempts to estab-
lish such a hybrid inversion framework, which combines ML
and physical modeling components for the estimation of forest
height from single-baseline single-polarimetric TanDEM-X
interferometric coherence. For this, the vertical reflectivity
profile is derived as a function of input features, including
topographic and acquisition geometry descriptors, using a
multilayer perceptron network. In a second step, the predicted
vertical reflectivity profile is used to invert forest height taking
advantage of the established physical relationship connecting
the vertical reflectivity profile to forest height.

The hybrid modeling approach is expected: 1) to use
the capability of ML techniques in identifying nonobvious
relationships or correlations, such as change in scattering
behavior with terrain topography and 2) to take advantage
of the well-established physical models to restrict the pos-
sible solution space down to physically meaningful solutions,
making the training process more efficient and reducing the
diversity of training data required (as for example the need for
reference data at different terrain conditions).

This article is structured as follows: Section II introduces
the data used in this work, Section III provides the technical
background required, Section IV presents the proposed hybrid
model and describes its implementation, Section V discusses
the results obtained when applying the proposed hybrid model
to TanDEM-X acquisitions, and finally, Section VI draws the
conclusions.

II. STUDY AREA AND EXPERIMENTAL DATA

This study uses data from three Gabonese tropical forest
sites: Lopé, Mabounié, and Rabi. The Lopé site is within the
Lopé National Park, consisting of Savannah and denser forest
of varying species composition and density. The maximum tree
height exceeds 50 m in many stands. The terrain is hilly, with
many local slopes steeper than 20°. Mabounié is a former min-
ing exploration site. Most of the test site is covered by mature
primary forest stands (with tree heights between 40 and 50 m)

and degraded forest (with tree heights around 20 m).
The terrain is relatively flat with few gentle slopes. Finally,
the Rabi test site consists of a diverse mix of upland and wet
forest with a mean tree height of about 40 m and features
fairly flat topography.

A large set of TanDEM-X images acquired over the three
sites is used. Table I summarizes the acquisitions and their
geometry. The (277) height of ambiguity (HoA) sign indicates
the orbit direction: a positive sign indicates an ascending orbit,
while a negative sign indicates a descending orbit.

Full-waveform LiDAR data were collected during the
AfriSAR2016 campaign in February 2016 by NASA’s airborne
Land, Vegetation, and Ice Sensor (LVIS) LiDAR sensor. The
LVIS footprints range from 18 to 22 m, and the waveforms
were resampled to a regular 20 x 20 m grid with the corre-
sponding RH98 and DTM models [27], [28]. The resampled
RHO98 heights are used as the reference heights hgef = RH9S.

III. METHODOLOGY

The measured interferometric coherence (¥ ops) between two
interferometric images s;(w) and s,(Ww) acquired at a given
polarization w is expressed as follows [29], [30]:

o (51 ()55 ()
obs (K2, W) = .
’ Joor(@)s1 (@) s2(2)53 (@)

The vertical wavenumber (in rad/m), x,, expresses the sensi-
tivity of the interferometric phase to height changes [10], [31]
27 A6 )
) sin (6p + @) o
where 6, is the radar look angle, Af# is the look angle
difference induced by the spatial baseline, A is the wavelength,
and « is the ground range terrain slope. The factor m depends
on the interferometric acquisition mode: m = 2 for monostatic,
while m = 1 for bistatic acquisitions. An equivalent way to
express the sensitivity of the interferometric phase-to-height

changes is the HoA HoA = 2x/k,.
The measured interferometric coherence can be factorized

s [32], [33], [34], [35]

Kz

?obs (KZ, J)) = )7Tmp (J})J;Rg(Kz));Sys (J)));Vol (sz ﬁ)) (3)
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where Prmp(w) accounts for the temporal decorrelation,
Yrg(k;) accounts for the range spectral decorrelation induced
by the spatial baseline, ysys(w) comprises various system-
induced decorrelations, including the decorrelation due to
the additive noise component, and finally, Pvei(k,, W) is the
decorrelation induced by the vertical extent of the scatterer.

In the case of bistatic TanDEM-X acquisitions, the factor m
in (2) becomes 1 and the temporal decorrelation contribution
Yrmp = 1. The system decorrelation contribution ysys and the
range spectral decorrelation yg, can be accurately estimated
and compensated making an accurate estimation of the vol-
ume decorrelation v, contribution possible [36], [37]. The
measured interferometric coherence and several decorrelation
contributions depend on the polarization of the images used
to construct the interferogram. However, since polarimetric
diversity is not considered in the following, the polarization
dependence is omitted.

A. Vertical Reflectively Profile and Forest Height Inversion

The volume decorrelation contribution (k) is related to
the vertical reflectivity profile f(z) of the forest and its top
canopy height &, as [30], [38], [39]

I f2ydz

where z denotes the position along the vertical axis. The
vertical reflectivity profile f(z) represents the vertical distri-
bution of scatterers and as such depends on the frequency,
polarization, and acquisition geometry. The lower boundary
of f(z) is determined by the reference height zp, which is
related to the location of the underlying ground. The upper
boundary of f(z) is defined by zo + h,.

In the case of TanDEM-X, only a single o (k,) mea-
surement is available, at least for a very long-time interval,
while the ground topography zo, forest height %,, and param-
eterization of the vertical reflectivity profile f(z) have to be
considered as unknowns.

“4)

fVol(Kz) =e

B. Modeling Vertical Reflectivity Profiles

The vertical reflectivity profile can be expressed in terms
of a polynomial series expansion. Originally, the Legendre
polynomials were used for this [30], [40], [41], [42]

fzan) =) a,Py(2) ©)

n=1
where P,(z) are the Legendre polynomials (Fig. 1) and a, are
the associated Legendre coefficients that are obtained as
_ 2n +1
2

1
ay /] f @) Py (z)dz. (6)

The summation extends to infinity, although, in practice, it is
truncated to a small number of terms. The proposed Legendre
polynomials have proven to be a well-suited generic basis as
they allow accurate reconstruction of f(z,a,) with a small
number of polynomials for various forest conditions.

5201411

1.00 4

0.75

0.50

0.25 4

N~ 0.00 4

-0.25

Po(2)
Pi(2)
Pa(2)
P3(2)
Py(2)
Ps(2)
Po(2)

—-0.50

—0.75 A

—1.00
-1.0

T T T 1

~05 0.0 05 10 15
Py(z)

Fig. 1. Graphical illustration showcasing the initial seven Legendre poly-
nomials plotted as a function of x, highlighting their distinct properties and
orthogonality within the given domain.
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Fig. 2. Conceptual architecture and functionality of the hybrid model in
(top) training phase and (bottom) inference phase.

IV. MODEL DEFINITION

The proposed hybrid model uses an ML algorithm to predict
the underlying vertical reflectivity profile f(z, a,), expressed
in terms of the Legendre series expansion [(5)], as a function
of features including interferometric volume coherence, acqui-
sition geometry (expressed by the vertical wavenumber), and
terrain slope. The predicted (or “learned”) vertical reflectivity
profile f(z, a,) is then used in the inversion of (4) to estimate
the forest height. Fig. 2 shows a conceptual representation of
the architecture and functionality of the proposed hybrid model
in the training and inference phases.

A. Model Training

In the training phase, the terrain-corrected vertical
wavenumber [(2)] and the reference forest height /ges are used
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in (4) to predict the absolute value of the volume decorrelation
|)7\‘Z)1 (k;, hret, f(2,a,))| for a given vertical reflectivity profile
f(z, a,) expressed by a predefined number (N =3 or N =7)
of Legendre polynomials using the associated coefficients
a, [(6)]. The obtained volume decorrelation prediction is
then compared against the volume decorrelation |y (k;)| as
estimated from the TanDEM-X data.

The training process begins with an arbitrary initialization
of the Legendre coefficients a,. The coefficients are then
iteratively updated to minimize the difference between the
predicted and actual volume decorrelation values. The coef-
ficients are determined by a multilayer perceptron to establish
the nonlinear relationship between them and the set of input
features by minimizing the difference between the predicted
and estimated volume decorrelation values. The set of input
features includes the terrain corrected vertical wavenumber «,
the volumetric coherence |pvo(k;)|, the incidence angle to
the ellipsoid corresponding to the angle between the line-
of-sight and the normal to the local ellipsoid 6, the local
incidence angle 6, and the terrain slope in the range
direction «. The optimization process uses a suitable loss
function mean-squared error (mse) and the Adam optimization
algorithm [43]

m

L var) = D (| Rz, et £ @ an)] = [ i) |)?

i=1

)

subject to
N

[z an) = Zan(’(z’ }77V01

n=1

59791005a)Pn(Z)‘ (8)

This way the model enhances its ability to link the features
and the Legendre coefficients of the vertical reflectivity profile.

An important point is to constrain positive reflectivity
profiles to ensure physically plausible vertical reflectivity
functions. To enforce positive profiles, a hyperbolic tangent
activation function is incorporated. Furthermore, to ensure
the physical plausibility of the model predictions, a linear
(regression) layer with a MinMaxNorm kernel constraint is
also integrated to constrain the weights of the model within a
certain range

N
Z an (Kza |?V01(Kz)
n=1

Forn = 1,2,3,...,N and 0 < h, < hpa, where hp.x i8S

set to 70. This constraint ensures that the predicted vertical

reflectivity profiles are positive and fall within a reasonable
range.

59’ elou Ol)Pn(Z) > 0. (9)

B. Model Inversion

Once the model is trained, it can be used to estimate forest
height from the input features. In a first step, the input features
are used to predict the vertical reflectivity profile f(z,a,),
which is subsequently used to estimate the forest height from
the |Jvo1(k;)| measurements in terms of (4). This last step can
be implemented in terms of a lookup table.
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TABLE I

MODELS AND ASSOCIATED NUMBER OF LEGENDRE COEF. AND
TANDEM-X ACQUISITION(S) AND HOA USED FOR
TRAINING [AS SHOWN IN FIG. 2 (TOP)]

ML Input PM
Model Coef. HoA (m) Features Inputs
A 3 652MNo2inTablen oz valsall hrer s,
’ 9100’ Q@ f(zvan)
52.45 (No 1 in Table I) oy (5. B
B 3 -6522®No2inTableD) = [Tvoll®z)l; flzet’ “z)’
95.41 (No 5 in Table I) > Vlocs @ Z dn,
52.45 (No 1 in Table I) ot (5. B
C 7  -65.22 (No 2 in Table I) Kz 1Yvolkz)ls Ref> Fz»
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95.41 (No 5 in Table I)

10

0.6

Coherence

3
3
g
2
S
3
S

I
s

0.4

2 : T

T 3
2

hRef * Kz hRef* Kz

Fig. 3. Volume coherence I;vm (k)| versus hretk, for the data space available
for training when (left) one, the No. 2 in Table I, or (right) three, the No. 1,
2, and 5 in Table I, TanDEM-X acquisitions are used. The colors represent
the relative sample density, ranging from dark blue (low density) to dark red
(high density).

Note that the interferometric volume coherences used for
training and inversion are derived from the interferometric
coherences estimated using a 7 x 7 window estimator as
described in [10].

C. Model Implementation

Three different models have been developed, differing in
the number and range of vertical wavenumbers (e.g., number
of TanDEM-X acquisitions) used for training and in the
number of Legendre polynomials used for the definition of the
vertical reflectivity profiles. The three models are summarized
in Table II. The first model (A) was trained using a single
TanDEM-X acquisition and used three Legendre polynomials
(N = 3) to define the vertical reflectivity profiles. The second
model (B) was trained using three TanDEM-X acquisitions
(two ascending and one descending) with different vertical
wavenumbers and three Legendre polynomials (N = 3) for the
definition of the vertical reflectivity profiles. Finally, the third
model (C) also used three TanDEM-X acquisitions for training
(the same as for model B) but seven Legendre polynomials
(N =T7) for defining the vertical reflectivity profiles. For each
of the three models, the available reference data were split
such that 60% of the data were used for training and 40% for
validation.

The data space available for training in the case of using one
(as in model A) or three (as in models B and C) TanDEM-X
acquisitions is shown in Fig. 3. There, the estimated volume
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coherence |Yvoi(k;)| for the one (on the left) and the three
(on the right) TanDEM-X acquisitions used for training are
plotted against the product hgeek,, i.e., the product of the
(terrain corrected) vertical wavenumber «, with the reference
forest height hges for each sample in the scene. The increased
training space when using three TanDEM-X acquisitions is
evident.

For training, acquisitions with (very) different vertical
wavenumbers are ideal to provide maximum coherence con-
trast. And, of course, acquisitions with vertical wavenumbers
similar to those targeted for inversion are likely to yield
better inversion performance. In this study, an acquisition with
moderately different vertical wavenumbers and one acquisition
in opposite geometry (descending) were preferred to avoid
overly optimistic inversion performance, thereby highlighting
both the strengths and remaining limitations of the proposed
approach.

V. RESULTS AND DISCUSSION

The three established models are applied to the TanDEM-X
dataset and validated against the available reference heights.
The validation focuses on assessing the inversion performance
by considering the number and range of vertical wavenumbers
(e.g., TanDEM-X acquisitions) used in the training phase and
the number of Legendre polynomials used for the definition
of the reflectivity profiles. First, the performance obtained
when training and inversion occur on the same site, but for
different acquisitions, is discussed. For this case, the Lopé site
is chosen. In a second step, the performance obtained when
the Lopé model is applied to the other two sites, Mabounié
and Rabi, for which it has not been trained, is evaluated.

The performance achieved over the Lopé site is summarized
in the three Figs. 4-6. Fig. 4 shows the vertical reflectivity
profiles “learned” by the three models, A (top), B (middle),
and C (bottom), for different terrain slopes. In the absence of a
direct way to assess the correctness of the vertical reflectivity
profiles “learned” by the models, their slope dependence is one
of the few, if not the only, test that allows some conclusions
about their physical credibility.

Indeed, the ability of the model to predict a stronger ground
scattering contribution on positive slopes facing toward the
radar than on negative slopes facing away is consistent with the
physical anticipation and thus an indication for the credibility
of the “learned” vertical reflectivity profiles. The light shadow
colors indicate the variance of the profiles within each slope
interval to illustrate the significance of the terrain adaptation
provided by the ML component. With increasing number of
acquisitions used for training the terrain adaptation improves
as indicated by the smaller profile variance of models B and C
with respect to model A. In addition, the improved vertical
resolution as the number of polynomials increases from three
to seven is evident when comparing the three models. From
models A to C, there is a more detailed definition of the
different layers of the vertical structure of the canopy.

Fig. 5 shows the plots obtained by plotting the volume
coherence |}vo1(k;)| against the product ik, for each of the
five TanDEM-X acquisitions and for each of the three models.
From left to right, the plots corresponding to acquisitions
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Fig. 4.  Set of vertical reflectivity profiles “learned” by the three models,

(top) A, (middle) B, and (bottom) C for different terrain slopes. Positive
slopes facing toward the radar and are consistently estimated with a stronger
ground scattering contribution than the profiles on negative slopes, which
facing away. The light colors indicate the variance of the profiles within each
slope interval.

1-5 (as referred to in Table I) are plotted. The forest height
estimates in the top row are obtained from model A, in the
middle from model B, and in the bottom row by using
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Estimated /, versus reference hrer forest height. The plots are generated using the Lopé forest height estimates %, obtained from the inversion of

each of the five TanDEM-X acquisitions (from left to right acquisitions 1-5 according to their numbering in Table I) using the three models (A, B, and C
from top to bottom). The framed plots indicate the acquisitions used for training. The colors represent the relative sample density, ranging from dark blue
(low density) to dark red (high density).

model C. The framed plots indicate the acquisitions used for
training. Similarly, Fig. 6 shows the corresponding validation

plots of the estimated forest height %, for each of the five
TanDEM-X acquisitions (1-5 from left to right, respectively)
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plotted against the reference forest height hgres. The plots are
arranged by model, with model A in the top row, model B in
the middle row, and model C in the bottom row.

To better understand the results, we present the following
figures that illustrate the model’s performance across different
scenarios.

The performance is characterized using the mean absolute
error (MAE)

1 n
MAE = ;;‘hv[ — hre; | (10)
and the root mean square error (RMSE)
1< 2
RMSE = | — hyi — hRet.) - 11
- ( Ref,) (11)

i=1

In Fig. 5, each plot visualizes the solution space provided
by the set of “learned” vertical reflectivity profiles for the
corresponding TanDEM-X acquisition. Note that the set of
“learned” vertical reflectivity profiles is intrinsic to each of
the three models, i.e., the same set of learned profiles is
used for each acquisition. Each “learned” vertical reflectivity
profile f(z, a,) draws a unique curve in |}y (k;)| versus hyk,
plane according to (4). In this sense, an optimal model should
provide a set of “learned” vertical reflectivity profiles that are
able to cover the whole data space in a unique way, and this
over a wide range of vertical wavenumbers.

As can be seen, this is not the case for model A. While for
the acquisition used for training, the set of “learned” vertical
reflectivity profiles provides an acceptable coverage of the
data space (i.e., compare with Fig. 3 left), this is not the
case for all other acquisitions (e.g., vertical wavenumbers).
Furthermore, for acquisition 1, the acquisition with the largest
vertical wavenumber (e.g., smallest HoA), the solution space
becomes ambiguous. This behavior directly reflects on the
corresponding validation plots in Fig. 5 (top row), where
unbiased results are obtained only for the acquisition used
for training. For acquisitions 3-5 with larger HoA, the forest
heights are overestimated, whereas for acquisition 1 with the
smallest HoA the ambiguous solution space becomes evident.
The MAE range is between 7.68 and 10.21 m, while the RMSE
fluctuates between 10.20 and 12.87 m, as shown in Table III.
Overall, model A has the highest mean errors among the three
models, with an overall MAE of 8.89 m and an overall RMSE
of 11.33 m, indicating its limited performance.

Model B performs better, as the “learned” vertical reflectiv-
ity profiles are able to cover almost the whole data space for
all available acquisitions. There are only small data subspaces
not covered by the solution space provided, as well as solution
achieved at the ambiguous part of h,x, range, i.e., after
reaching the first coherence minimum. These are indicators
for a suboptimum set of “learned” vertical reflectivity profiles.
However, this is not reflected on the performance plots (Fig. 6
middle) where the MAE values range between 7.42 and
8.42 m, and the RMSE values between 9.61 and 10.92 m,
manifesting the improved performance compared with model
A, as shown in Table III. Overall, model B achieves a lower
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TABLE III

PERFORMANCE COMPARISON OF DIFFERENT MODELS ACROSS
SCENES BASED ON RMSE AND MAE METRICS

Scene No Site RMSE [m] MAE [m]
Model A
Scene 1 Lope 11.17 9.08
Scene 2 Lope 10.20 7.68
Scene 3 Lope 11.03 8.49
Scene 4 Lope 11.60 9.33
Scene 5 Lope 12.87 10.21
Overall 11.33 8.89
Model B
Scene 1 Lope 9.61 7.42
Scene 2 Lope 10.75 8.23
Scene 3 Lope 10.68 7.93
Scene 4 Lope 10.87 8.42
Scene 5 Lope 10.92 8.01
Overall 10.58 8.02
Model C
Scene 1 Lope 8.09 6.28
Scene 2 Lope 9.09 6.93
Scene 3 Lope 8.34 6.41
Scene 4 Lope 8.97 6.98
Scene 5 Lope 9.62 7.32
Overall 8.84 6.79

mean MAE of 8.02 m and a mean RMSE of 10.58 m,
indicating a notable performance improvement over model A.

Finally, model C performs best, as the “learned” vertical
reflectivity profiles are able to cover almost the whole data
space in a consistent way across all available acquisitions.
This is reflected also on its superior performance with lower
MAE levels ranging from 6.28 to 7.32 m and lower RMSE
levels ranging from 8.09 to 9.62 m, as summarized in Table III.
Notably, model C achieves the lowest overall MAE and RMSE
values among all models, with an overall MAE of 6.79 m and
an overall RMSE of 8.84 m. Furthermore, the performance is
very consistent across the entire range of vertical wavenumbers
indicating the ability of the “learned” vertical reflectivity
profiles to describe the underlying reflectivity.

In addition to the two cases using N = 3 (model B) and
N =7 (model C) Legendre coefficients to describe the vertical
reflectivity profiles, models with varying N-values ranging
from 3 to 9 were implemented and tested to assess their
impact on inversion performance, consistently using the same
three TanDEM-X acquisitions for training. The performance
of models with N = 4,5, and 6, as expected, lies between
N = 3 and N = 7 cases, gradually improving with increas-
ing N. For models with higher N values (N = 8 and 9),
performance progressively deteriorates due to overfitting.

After evaluating the performance obtained when inverting
acquisitions of the same area where training was performed but
acquired with different vertical wavenumbers than the one(s)
used for training, it is time to validate the transferability of
the model to sites other than the one where it was trained. For
this, the best performing model C is applied and validated on
different TanDEM-X acquisitions over the Mabounié and Rabi
sites. Both the sites are characterized by different forest types
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Fig. 7.  (Left) Volume coherence |;V01(Kz)| versus hyk, plots and (right)
validation plots for the four Mabounié acquisitions (from top to bottom
acquisitions 69 according to their numbering in Table I). The colors represent
the relative sample density, ranging from dark blue (low density) to dark

red (high density). (a) Scene No. 6. (b) Scene No. 7. (c) Scene No. 8.
(d) Scene No. 9.

and forest height distributions and have different topographic
characteristics than the Lopé site. The achieved results in form
of the volume coherence |77\‘,%1(KZ)| versus hyk, plots and the
validation plots are shown for the four Mabounié acquisitions
(acquisitions 69 according to their numbering in Table I) in
Fig. 7 and for the four Rabi acquisitions (acquisitions 10-13
according to their numbering in Table I) in Fig. 8. The plots
are generated using the forest height estimates /i, obtained
from the inversion of each of the TanDEM-X acquisitions.
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Fig. 8.  (Left) Volume coherence |?v01(KZ)| versus hyk, plots and (right)
validation plots for the four Rabi acquisitions (from top to bottom acquisitions
10-13 according to their numbering in Table I). The colors represent the
relative sample density, ranging from dark blue (low density) to dark red
(high density). (a) Scene No. 10. (b) Scene No. 11. (c) Scene No. 12.
(d) Scene No. 13.

The achieved performance is for all acquisitions on both
the sites, as expected, inferior to the one achieved in Lopé.
Looking on |yvo(k,)| versus hy,k, plots for both the sites, one
sees that the vertical reflectivity profiles “learned” in Lopé
are relevant enough to provide a consistent solution space
for all Mabounié and Rabi acquisitions. However, comparing
Lopé |PvoiYvoi (k)| versus hyk, plots (Fig. 5), it is also clear
that only a subset of the “learned” reflectivity profiles are
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TABLE IV

PERFORMANCE COMPARISON OF MODEL C ACROSS SITES BASED
ON RMSE AND MAE METRICS

Scene No Site RMSE [m] MAE [m]
Model C
Scene 6 Mabounié 10.02 7.90
Scene 7 Mabounié 9.84 7.80
Scene 8 Mabounié 10.98 8.58
Scene 9 Mabounié 11.10 8.73
Scene 10 Rabi 8.84 6.98
Scene 11 Rabi 8.70 6.81
Scene 12 Rabi 8.93 6.97
Scene 13 Rabi 11.34 8.95

used for the inversion in Mabounié and Rabi. This is most
likely because the reflectivity profiles “learned” in Lopé are
not optimal to describe the underlying reflectivity in the other
two sites due to the different forest structures there. The
performance across the whole set of acquisitions (e.g., across
the whole range of vertical wavenumbers) for both the sites
is consistent and widely unbiased with MAE values ranging
between 7.80 and 8.73 m and RMSE values between 9.84 and
11.10 m in Mabounié and with MAE values ranging between
6.81 and 8.95 m and RMSE values between 8.70 and 11.34 m
in Rabi, as summarized in Table IV.

VI. CONCLUSION

In this study, a hybrid model combining ML with physical
modeling was proposed for estimating forest height from
single-baseline, single-polarimetric TanDEM-X interferomet-
ric coherence measurements. The integration of physical
knowledge with domain expertise through a join architecture
was attempted to improve the performance of the physical
model and the interpretability of the ML architecture, resulting
in an overall improved performance.

The proposed model uses an ML algorithm to predict the
underlying vertical reflectivity profile, expressed in terms of
the Legendre series expansion, as a function of features such as
interferometric volume coherence, vertical wavenumber, and
terrain slope. The predicted vertical reflectivity profile is then
used in a physical relationship to estimate forest height.

Three different versions of such a hybrid model were
implemented and applied to TanDEM-X acquisitions. The
resulting forest heights were validated against the available
reference heights. The emphasis was on assessing the inversion
performance as a function of the number and the range of the
vertical wavenumbers (e.g., TanDEM-X acquisitions) used in
the training phase and the number of Legendre polynomials
used to define the reflectivity profiles.

It appears that a certain vertical resolution of the verti-
cal reflectivity profiles, expressed by the larger number of
Legendre polynomials used to define them, is required to
achieve better inversion performance. On the other hand,
a set (e.g., more than one) of acquisitions with significantly
different vertical wavenumbers are required to obtain vertical
reflectivity profiles that are able to span a unique solution
space covering the entire possible data space for a wide range
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of vertical wavenumbers. The best results in the study were
obtained with three TanDEM-X acquisitions, but the important
criterion is the difference in their vertical wavenumbers. With
this in mind, two acquisitions may be sufficient for achieving
acceptable performance. It is worth noting here that the
combination of ascending and descending acquisitions in the
training dataset appears to be possible.

The advantages of this approach are obvious. First, it allows
forest height estimates to be obtained without the full obser-
vation space required for a model-based inversion. This is
because the ML component seems to be able to establish
a relationship between the shape of the vertical reflectivity
profile and features such as interferometric volume coherence,
the associated vertical wavenumber, and terrain topography.
The advantages of the hybrid approach of first predicting a
vertical reflectivity profile and then using it to perform a
classical inversion are twofold: it minimizes the number of
acquisitions required in the training phase to the few needed
to “learn” the vertical reflectivity profile. The relationship
between the interferometric volume coherence and the forest
height at different vertical wavenumbers does not have to
be established separately. It is given by the known vertical
reflectivity profile.

The performance of any height estimation algorithm that
uses interferometric coherence is critically dependent on its
capacity to capture the spatial variation in the underlying
reflectivity profile. This capability is strongly influenced by
the boundary conditions of the inversion problem, such as the
available observation space, the quantity and type of ancillary
data or prior knowledge, and, importantly, the characteristics
of the site where performance is evaluated. Consequently,
comparing forest height estimation algorithms that operate
under different boundary conditions is challenging. The pro-
posed approach enables forest height estimation from a single
TanDEM-X acquisition but, in its most effective implemen-
tation, requires three TanDEM-X acquisitions and a set of
reference forest height measurements for training to account
for the spatial variation in the underlying reflectivity profile.

Of course, the dependence of the vertical reflectivity profile
on the different forest conditions is not trivial to be determined
by any ML component, as it requires data and knowledge that
are commonly not available. This lack of adaptability to the
different forest structure conditions is also the main reason for
the relatively high RMSE values characterizing the inversion
results. This ability to adapt to local forest conditions remains
the main advantage of model-based approaches, which—if the
required observation space is available—are able to do so
independently of the availability of any training datasets.
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