Braham, Nassim Ait Ali (2024) Foundation Models in Remote Sensing: Insights from Multispectral and Hyperspectral Self-Supervised Learning. Invited Presentation at IBM Thomas J. Watson, 2024-11-27, Yorktown Heights, NY, United States.
PDF
3MB |
Kurzfassung
Self-supervised learning (SSL) has triggered a paradigm shift in computer vision and remote sensing, enabling the development of foundation models that generalize across diverse downstream tasks with minimal or no fine-tuning. This talk will be structured in three parts. The first part provides a concise overview of SSL in remote sensing and its applications. The second part discusses a use case of SSL-pretrained models for forest monitoring, focusing on practical aspects for semantic segmentation problems: foundation models vs. specialized models, inference cost, and the importance of qualitative evaluation of model outputs. The final part introduces SpectralEarth, a large-scale dataset designed for pretraining hyperspectral foundation model, and its potential in advancing hyperspectral and multi-sensor SSL.
elib-URL des Eintrags: | https://elib.dlr.de/209213/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Anderer) | ||||||||
Titel: | Foundation Models in Remote Sensing: Insights from Multispectral and Hyperspectral Self-Supervised Learning | ||||||||
Autoren: |
| ||||||||
Datum: | November 2024 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Self-supervised learning, foundation models, multispectral, hyperspectral | ||||||||
Veranstaltungstitel: | Invited Presentation at IBM Thomas J. Watson | ||||||||
Veranstaltungsort: | Yorktown Heights, NY, United States | ||||||||
Veranstaltungsart: | Andere | ||||||||
Veranstaltungsdatum: | 27 November 2024 | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||
Hinterlegt von: | Ait Ali Braham, Nassim | ||||||||
Hinterlegt am: | 27 Nov 2024 13:39 | ||||||||
Letzte Änderung: | 27 Nov 2024 13:39 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags