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INTRODUCTION TO SELF-
SUPERVISED LEARNING



Motivation: Why SSL?

▪ Deep Learning requires annotated data

▪ Labeled data is rare

▪ Costly to obtain

▪ Tedious annotation process

▪ Unlabeled data is abundant 

▪ Satellite archives with Petabytes of data

How to exploit unlabeled data for deep 

learning with RS image analysis? 
Self-Supervised Learning



What is SSL?
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Overview of Self Supervised Learning

▪ Goal

▪ Obtain training feedback from the data 

itself

▪ Learn representations in a self-

supervised fashion

▪ no human annotation

▪ Why?

▪ A pre-trained model can be transferred to 

downstream tasks

▪ Improve accuracy and label efficiency



Foundation Models

6 Jia-Bin Huang auf X: „Making pretrained models cool again! https://t.co/puJA3zUJzG“ / X

▪ Foundation models, latest 

buzzword in the AI sphere

▪ Foundation models = Big 

Architecture + SSL algorithm + a 

lot of data

▪ SSL algorithms

▪ Contrastive methods

▪ Masked Image Modeling

▪ …

https://x.com/jbhuang0604/status/1430186357234839563


Contrastive Learning
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▪ General idea

▪ Siamese architecture with shared 

parameters

▪ Similar images (views) are generated 

using data augmentation

▪ Enforce invariance to the 

augmentations

▪ Problem: a constant function is invariant 

(collapse)

▪ Mitigating collapse

▪ Negative sampling: MoCo, SimCLR

▪ Clustering: SwAV

▪ Knowledge distillation: BYOL, 

SimSiam, DINO

▪ Redundancy reduction: BarlowTwins, 

VICReg



Masked Image Modeling
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▪ General idea

▪ Predict missing patches from visible 

ones

▪ Typically high masking ratio (~75%)

▪ Prediction targets

▪ Raw pixels: MAE 

▪ Hand-crafted features: MaskFeat

▪ Visual tokens: BEiT

▪ Latent representations: data2vec

▪ Generally used with Transformer 

backbones

A Schematic overview of Masked Autoencoders*

*He, Kaiming, et al. "Masked autoencoders are scalable vision learners." 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition. 2022.



Contrastive vs Masked Image Modeling
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▪ Contrastive Learning

⁺ Highly semantic features, great for 

classification tasks

⁺ Architecture agnostic

⁺ Competitive results on ImageNet

⁺ Can require a large batch size

⁺ Requires having good augmentations

⁺ Special care for negative 

samples/collapse

▪ Masked Image Modeling

⁺ Conceptually simple, no positive/negative 

pairs

⁺ Masking generally reduces pre-training 

time

⁺ Competitive results on ImageNet

– Requires Transformer backbone

– Lower-level features => requires fine-

tuning, poor linear performance

Ongoing efforts to combine the benefits of both approaches



SSL in RS
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▪ A lot of research happening in the field

▪ > 100 foundation model papers in the past few years

▪ Predominantly for multispectral and high resolution RGB imagery

▪ Little work in the hyperspectral domain

▪ A trend towards multi-sensor foundation models
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SSL ON SENTINEL 2 DATA: A 
FOREST-MONITORING USE-CASE



Evoland
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▪ Goals

▪ Improve/extend existing Copernicus Land Monitoring Service products

▪ Leverage ML for land surface continuous monitoring

▪ Application to agriculture, forest, water, urban and general land-cover



Evoland: Forest Use Case
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From Dominant Leaf Type 2018 — Copernicus Land 

Monitoring Service

▪ Goal: Increase temporal frequency for 

forest monitoring

▪ Input: Single Sentinel 2 timestamp

▪ Output: Binary tree masks, tree density, 

forest disturbance

https://land.copernicus.eu/pan-european/high-resolution-layers/forests/dominant-leaf-type/status-maps/dominant-leaf-type-2018


SSL4EO-S12
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▪ ~250,000 S2-S1 patches

▪ 264x264 pixels

▪ 1.5TB of data

▪ 4 timestamps per location

Results on BigEarthNet: Pre-

training improves performance and 

label efficiency 
Wang, Y., Braham, N. A. A., Xiong, Z., Liu, C., Albrecht, C. M., & Zhu, X. X. (2023). SSL4EO-S12: A large-scale

multimodal, multitemporal dataset for self-supervised learning in Earth observation [Software and Data Sets]. IEEE 

Geoscience and Remote Sensing Magazine, 11(3), 98-106.



SSL4EO-EU-Forests
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– ~16,000 locations

– 4 seasons

– Sentinel 2 images, HLR 2018 mask

S2 Images

HLR 

Masks Geographical distribution of the SSL4EO-EU-

Forest dataset



Initial Results
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Segmentation 

Protocol

Encoder Pre-training 

Weights

Overall 

Accuracy

Mean 

IoU

UNet ResNet-18 Random 85.58 75.19

MoCo 88.03 78.61

DINO 88.72 79.72

ResNet-50 Random 85.69 74.97

MoCo 88.68 79.66

DINO 88.18 78.85

DeepLabV3+ ResNet-18 Random 84.89 73.95
MoCo 87.37 77.58
DINO 87.82 78.29

ResNet-50 Random 84.73 73.65
MoCo 88.14 78.80
DINO 87.59 77.92

UpConv ViT-S Random 86.35 76.03
MoCo 87.38 77.59
DINO 88.57 77.49

▪ Pre-training consistently 

improves the results

▪ ResNet-50 does not

improve upon ResNet-18

▪ Similar performance for

ViT and ResNet

▪ UNet never gets old

Fine-tuning results after 100 epochs



Qualitative assessment 
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S2 Image Mask ResNet-18 ViT-S

Loss of fine-

grained features!

Similar scores 

for ResNet-18 

and ViT-S, 

different visual

appearance



Improving details preservation
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▪ Architecture: ResNet Stem layer downscales 

the image by a factor of 4

▪ Loss function: Fine-grained features are 

diluted in the cross-entropy loss

Remove the pooling and set stride to 1

Introduce a stride of 2 in the 1st

residual block

Put a higher weight on the boundary 

pixels of the mask in the loss



Improved Results
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S2 Image Mask ResNet-18

Refined 

outputs! Yet, no 

significant 

change in 

mIoU/accuracy 

Custom 

ResNet-18 + 

Weighted 

CE



How Practical are Foundation Models?
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▪ Strong generalization capabilities

▪ Little to no fine-tuning needed, 

works out of the box

▪ Label efficiency

▪ Cool branding 

▪ High inference cost

▪ High memory cost

▪ Good in many tasks, not necessarily the 

best in any

▪ ViT limitations for pixel-level tasks

▪ Still requires some labels

Advantages

How Practical are Foundation Models?

Limitations

What can we do to make SSL/foundation models more useful for real-world applications?
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SPECTRALEARTH: TRAINING 
HYPERSPECTRAL FOUNDATION 
MODELS AT SCALE



Motivation

22

▪ A lot of research on foundation models for 

MSI: SatMAE, ScaleMAE, Prithvi, DOFA, 

SkySense, etc. 

▪ Less research on foundation models in HSI

▪ No suitable dataset for pre-training 

hyperspectral foundation models

▪ Contribution: SpectralEarth a globally 

distributed dataset, pre-trained models and 

benchmark

https://doi.org/10.48550/arXiv.2408.08447

https://doi.org/10.48550/arXiv.2408.08447


SpectralEarth: A large-scale HSI dataset
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▪ Based on EnMAP imagery

▪ 30m resolution, 202 bands

▪ ~538,974 patches, 128x128 

pixels. 

▪ ~415,153 unique locations

▪ ~73,000 locations with > 1 

timestamp

▪ Sampled from 11,636 tiles

▪ ~3.3 TB of data

▪ Mostly cloud free

Geographical distribution of SpectralEarth



Creating the dataset
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▪ Input: ~11K EnMAP tiles

▪ Ideally, we want to maximize the # of 

patches with temporal positives

▪ The longer the time series, the better

=> Prioritize the areas of overlaps, 

prioritize areas with higher degrees of 

overlap

▪ More costly than I initially expected 

▪ Some tiles have degree > 30

A graph representing EnMAP tiles overlaps: nodes are tiles, two nodes are 

connected iff the two tiles overlap 



Patchifying the data
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▪ Simple pipeline, but a lot of nasty details

▪ Annoying details: NaN values, duplicate

tiles, projections…

▪ A lot of time optimizing the script: 

reducing # combinations, avoiding 

redundant computation, more efficient 

overlap checking, reducing I/O, 

parallelizing the script over connected 

components…



Samples from SpectralEarth
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Downstream Tasks
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▪ Paired EnMAP imagery with 

Land Cover and Crop Type 

products

▪ CORINE: Multi-label land 

cover classification

▪ CDL: Crop type 

segmentation

▪ NLCD: Land cover 

segmentation

SpectralEarth downstream tasks



Models
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▪ Network Architectures

▪ Simple variation of classical CNN 

and Vision Transformer 

architecutres

▪ 1D convolutions to extract

spectral features

▪ Models ranging from 22M to 1.1B

parameters

▪ 3 SSL Algorithms

▪ > 10 pre-trained models

Backbone architectures



Results: Comparing SSL Algorithms
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▪ DINO and MoCo perform well in frozen encoder evaluation

▪ Little benefit when fine-tuning

▪ MAE is competitive in segmentation tasks, and improves fine-tuning performance

▪ ConvNets are not out of the game



Results: Large Vision Transformers
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▪ MAE with large ViTs always improves the results

▪ Fine-tuning the Spectral Adapter sometimes outperforms training from scratch

▪ Modest improvements from increasing model size

▪ Large ViTs require very large datasets 



Results: Efficient Training
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Convergence speed: EnMAP-CORINE and 

EnMAP-CDL
Limited labels setting: EnMAP-CORINE and 

EnMAP-CDL

Pre-trained models converge faster when 

fine-tuned

Pre-trained models help when labels are 

scarse



ViT Patch Size: An Important Hyperparameter
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▪ Tokens representing smaller patches help preserve finer spatial and spectral details

Frozen encoder eval with varying patch 

size



Future Directions
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− Explore more complex backbone architectures

− Extend the set of pre-training algorithms

− SpectralEarth-MM 

− Pair SpectralEarth with other sensors (Sentinel 2, Sentinel 1, Landsat 8)

− Investigate multi-sensor pre-training => exploit complementarity of different sensors

Dataset available through EOC Geoservice
https://geoservice.dlr.de/web/datasets/enmap_spectralearth

https://geoservice.dlr.de/web/datasets/enmap_spectralearth
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CONCLUSION



Some Open Questions
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▪ What can we do to make SSL/foundation models more useful for real-world applications? 

Could model distillation help?

▪ Specialized models vs. Foundation models, when to resort to each? 

▪ What evaluation protocols are most relevant for evaluating foundation models? Frozen 

encoder? Full fine-tuning? Partial fine-tuning?

▪ Are we getting the full picture from benchmark tables? E.g., models with similar mIoU can 

behave differently

▪ How far should we chase the ultimate foundation model that can process any sensor (even 

unseen ones)? What is the right balance between fitting a sensor well and generalizing to as 

many sensors as possible?



Questions?
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