FOUNDATION MODELS IN REMOTE SENSING: INSIGHTS FROM MULTISPECTRAL AND HYPERSPECTRAL SELF-SUPERVISED LEARNING

Nassim Ait Ali Braham

EO Data Science, Remote Sensing Technology Institute, DLR Data Science in Earth Observation, Technical University of Munich, Germany

Outline

1. Introduction to Self-Supervised Learning

2. SSL on Sentinel 2 data: a forest-monitoring use-case

3. SpectralEarth: Training hyperspectral foundation models at scale

4. Conclusion

INTRODUCTION TO SELF-SUPERVISED LEARNING

Motivation: Why SSL?

Deep Learning requires annotated data

Labeled data is rare

- Costly to obtain
- Tedious annotation process

Unlabeled data is abundant

Satellite archives with Petabytes of data

How to exploit unlabeled data for deep learning with RS image analysis?

Self-Supervised Learning

What is SSL?

Goal

- Obtain *training feedback* from the data itself
- Learn representations in a selfsupervised fashion
 - no human annotation

• Why?

- A pre-trained model can be transferred to downstream tasks
- Improve accuracy and label efficiency

Overview of Self Supervised Learning

Foundation Models

- Foundation models, latest buzzword in the AI sphere
- Foundation models = Big Architecture + SSL algorithm + a lot of data
- SSL algorithms
 - Contrastive methods
 - Masked Image Modeling
 - ...

Pretrained Models

Foundation Models

Contrastive Learning

- General idea
 - Siamese architecture with shared parameters
 - Similar images (views) are generated using data augmentation
 - Enforce invariance to the augmentations
- Problem: a constant function is invariant (collapse)
- Mitigating collapse
 - Negative sampling: MoCo, SimCLR
 - Clustering: SwAV
 - Knowledge distillation: BYOL, SimSiam, DINO
 - Redundancy reduction: BarlowTwins, VICReg

Masked Image Modeling

- General idea
 - Predict missing patches from visible ones
 - Typically high masking ratio (~75%)
- Prediction targets
 - Raw pixels: MAE
 - Hand-crafted features: MaskFeat
 - Visual tokens: BEiT
 - Latent representations: data2vec
- Generally used with Transformer backbones

A Schematic overview of Masked Autoencoders*

*He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

Contrastive vs Masked Image Modeling

- Contrastive Learning
 - Highly semantic features, great for classification tasks
 - + Architecture agnostic
 - + Competitive results on ImageNet
 - + Can require a large batch size
 - + Requires having good augmentations
 - Special care for negative samples/collapse

- Masked Image Modeling
 - Conceptually simple, no positive/negative pairs
 - Masking generally reduces pre-training time
 - + Competitive results on ImageNet
 - Requires Transformer backbone
 - Lower-level features => requires fine-

tuning, poor linear performance

Ongoing efforts to combine the benefits of both approaches

- A lot of research happening in the field
- > 100 foundation model papers in the past few years
- Predominantly for multispectral and high resolution RGB imagery
- Little work in the hyperspectral domain
- A trend towards multi-sensor foundation models

SSL ON SENTINEL 2 DATA: A FOREST-MONITORING USE-CASE

Evoland

Goals

- Improve/extend existing Copernicus Land Monitoring Service products
- Leverage ML for land surface continuous monitoring
- Application to agriculture, forest, water, urban and general land-cover

Evoland: Forest Use Case

- Goal: Increase temporal frequency for forest monitoring
- Input: Single Sentinel 2 timestamp
- Output: Binary tree masks, tree density, forest disturbance

From <u>Dominant Leaf Type 2018 — Copernicus Land</u> <u>Monitoring Service</u>

SSL4EO-S12

- ~250,000 S2-S1 patches
- 264x264 pixels
- 1.5TB of data
- 4 timestamps per location

Results on BigEarthNet: Pretraining improves performance and label efficiency

14

Wang, Y., Braham, N. A. A., Xiong, Z., Liu, C., Albrecht, C. M., & Zhu, X. X. (2023). SSL4EO-S12: A large-scale multimodal, multitemporal dataset for self-supervised learning in Earth observation [Software and Data Sets]. *IEEE Geoscience and Remote Sensing Magazine*, *11*(3), 98-106.

Global Coverage

Multiple Modalities

Multiple Seasons

Earth Observation

SSL4EO-EU-Forests

- -~16,000 locations
- –4 seasons
- Sentinel 2 images, HLR 2018 mask

HLR Masks

Geographical distribution of the SSL4EO-EU-Forest dataset

Initial Results

- Pre-training consistently improves the results
- ResNet-50 does not improve upon ResNet-18
- Similar performance for ViT and ResNet
- UNet never gets old

Segmentation Protocol	Encoder	Pre-training Weights	Overall Accuracy	Mean IoU
UNet	ResNet-18	Random	85.58	75.19
		MoCo	88.03	78.61
		DINO	88.72	79.72
	ResNet-50	Random	85.69	74.97
		MoCo	88.68	79.66
		DINO	88.18	78.85
DeepLabV3+	ResNet-18	Random	84.89	73.95
		MoCo	87.37	77.58
		DINO	87.82	78.29
	ResNet-50	Random	84.73	73.65
		MoCo	88.14	78.80
		DINO	87.59	77.92
UpConv	ViT-S	Random	86.35	76.03
		МоСо	87.38	77.59
		DINO	88.57	77.49

Fine-tuning results after 100 epochs

Qualitative assessment

Similar scores for ResNet-18 and ViT-S, different visual appearance

Mask

ResNet-18

ViT-S

Improving details preservation

 Architecture: ResNet Stem layer downscales the image by a factor of 4

 Remove the pooling and set stride to 1
Introduce a stride of 2 in the 1st residual block

 Loss function: Fine-grained features are diluted in the cross-entropy loss

Put a higher weight on the boundary pixels of the mask in the loss

Improved Results

Refined

outputs! Yet, no

significant

change in

mIoU/accuracy

S2 Image

Mask

ResNet-18

Custom ResNet-18 + DLR Weighted

How Practical are Foundation Models?

Advantages

- Strong generalization capabilities
- Little to no fine-tuning needed, works out of the box
- Label efficiency
- Cool branding

Limitations

- High inference cost
- High memory cost
- Good in many tasks, not necessarily the best in any
- ViT limitations for pixel-level tasks
- Still requires some labels

What can we do to make SSL/foundation models more useful for real-world applications?

SPECTRALEARTH: TRAINING HYPERSPECTRAL FOUNDATION MODELS AT SCALE

Motivation

- A lot of research on foundation models for MSI: SatMAE, ScaleMAE, Prithvi, DOFA, SkySense, etc.
- Less research on foundation models in HSI
- No suitable dataset for pre-training hyperspectral foundation models
- Contribution: SpectralEarth a globally distributed dataset, pre-trained models and benchmark

https://doi.org/10.48550/arXiv.2408.08447

SpectralEarth: A large-scale HSI dataset

- Based on *EnMAP* imagery
- 30m resolution, 202 bands
- ~538,974 patches, 128x128 pixels.
 - ~415,153 unique locations
 - ~73,000 locations with > 1 timestamp
 - Sampled from 11,636 tiles
- ~3.3 TB of data
- Mostly cloud free

Geographical distribution of SpectralEarth

Creating the dataset

- Input: ~11K EnMAP tiles
- Ideally, we want to maximize the # of patches with temporal positives
- The longer the time series, the better

=> Prioritize the **areas of overlaps**, prioritize areas with **higher degrees of overlap**

- More costly than I initially expected
 - Some tiles have degree > 30

A graph representing EnMAP tiles overlaps: nodes are tiles, two nodes are connected iff the two tiles overlap

Patchifying the data

- Simple pipeline, but a lot of nasty details
- Annoying details: NaN values, duplicate tiles, projections...
- A lot of time optimizing the script: reducing # combinations, avoiding redundant computation, more efficient overlap checking, reducing I/O, parallelizing the script over connected components...

Alg	orithm 1 Temporal Views Extraction
1:	procedure Main Procedure
2:	$tiles \leftarrow EnMAPData$
3:	overlap_graph \leftarrow GETOVERLAPS(tiles)
4:	$R_tree \leftarrow K_0$ \triangleright empty tree, for SpectralEarth patches
5:	for tile in tiles do
6:	$combs \leftarrow BUILDCOMBINATIONS(tile, overlap_graph)$
7:	for tile_subset in combs do
8:	intersection \leftarrow INTERSECTION(tile_subset)
9:	$patches \leftarrow PATCHIFY(intersection)$
10:	UPDATE(<i>R_tree</i> , <i>patches</i>)
11:	end for
12:	end for
13:	end procedure
14:	function BUILDCOMBINATIONS(tile, overlap_graph)_
15:	combinations \leftarrow GETEDGES(tile, overlap_graph) ²
16:	for subset size n in $[3, 4, \ldots]$ do
17:	get <i>n</i> -tuples from (<i>n</i> -1)-tuples in combinations
18:	compute intersections of all <i>n</i> -tuples
19:	keep largest <i>n</i> -tuples by area
20:	if no valid <i>n</i> -tuple found then
21:	break
22:	end if
23:	add <i>n</i> -tuples to <i>combinations</i>
24:	end for
25:	return combinations
26:	end function

Samples from SpectralEarth

Downstream Tasks

- Paired EnMAP imagery with Land Cover and Crop Type products
 - CORINE: Multi-label land cover classification
 - CDL: Crop type segmentation
 - NLCD: Land cover segmentation

(b) Classes: Urban fabric, Industrial units, Arable land, Natural grassland, sparsely vegetated areas.

(c) Classes: Urban fabric, Arable land, Permanent crops, Complex cultivation patterns, Inland waters.

(d) Classes: Urban fabric, Arable

(d) **Classes**: Urban fabric, Arable land, Complex cultivation patterns, Coniferous forest.

Figure 4. Sample pseudo-RGB images of the curated EnMAP-CORINE multi-label classification benchmark.

⁽b) EnMAP-NLCD

SpectralEarth downstream tasks

Models

Network Architectures

- Simple variation of classical CNN and Vision Transformer architecutres
- 1D convolutions to extract spectral features
- Models ranging from 22M to 1.1B parameters
- 3 SSL Algorithms
- > 10 pre-trained models

Backbone architectures

Results: Comparing SSL Algorithms

- **DINO** and **MoCo** perform well in **frozen encoder** evaluation
 - Little benefit when fine-tuning
- **MAE** is competitive in segmentation tasks, and improves fine-tuning performance
- **ConvNets** are not out of the game

Evaluation protocol	Init Weights	EnMAP-COR	RINE (F1 Score)	EnMAP-C	DL (mIoU)	EnMAP-NLCD (mIoU)		
(# of trainable params.)	int (regits	Spec. RN50	Spec. ViT-S	Spec. RN50	Spec. ViT-S	Spec. RN50	Spec. ViT-S	
	Random	70.53	70.42	44.72	46.52	35.86	36.85	
Frozen Encoder (0)	MoCo-V2	73.97	73.60	51.66	50.37	41.98	39.85	
	DINO	76.64	75.06	51.53	51.01	41.77	40.31	
	MAE	_	72.72	_	51.37	_	41.17	
	Random	78.31	77.78	57.53	55.07	48.18	45.95	
$\mathbf{E}_{\mathbf{v}}$	MoCo-V2	78.57	78.40	58.10	55.84	48.09	45.78	
Full Fine-tuning (>20M)	DINO	77.98	78.34	57.77	55.70	47.75	45.71	
	MAE	_	78.66	-	57.66	_	47.82	
	MoCo-V2	76.27	76.12	55.36	54.37	44.66	43.40	
Fine-tune Adapter (56K)	DINO	78.43	77.95	55.26	53.50	44.41	43.00	
	MAE	_	76.80	-	54.61	_	43.92	

Results: Large Vision Transformers

- **MAE** with large ViTs always improves the results
 - Fine-tuning the Spectral Adapter sometimes outperforms training from scratch
- Modest improvements from increasing model size
 - Large ViTs require very large datasets

Evaluation Protocol	EnMAP-CORINE (F1 Score)				EnMAP-CDL (mIoU)			EnMAP-NLCD (mIoU)				
	В	L	Н	g	В	L	Н	g	В	L	Н	g
Training from Scratch	76.99	77.24	77.28	76.85	54.79	54.50	54.83	54.74	45.96	45.62	45.53	45.58
Frozen Encoder	74.72	75.07	76.06	75.33	51.20	53.14	53.19	52.77	40.52	42.88	43.32	42.63
Full Fine-tuning	79.05	79.18	79.80	78.38	57.70	58.19	58.06	57.86	48.10	48.37	48.28	48.08
Fine-tune Adapter	77.09	77.79	77.94	77.86	54.79	55.35	55.14	54.90	43.97	44.46	44.67	44.73

Results: Efficient Training

Pre-trained models converge faster when fine-tuned

Pre-trained models help when labels are scarse

Convergence speed: EnMAP-CORINE and EnMAP-CDL

Limited labels setting: EnMAP-CORINE and EnMAP-CDL

ViT Patch Size: An Important Hyperparameter

- Tokens representing smaller patches help preserve finer spatial and spectral details

Future Directions

- Explore more complex backbone architectures
- Extend the set of pre-training algorithms
- SpectralEarth-MM
 - Pair SpectralEarth with other sensors (Sentinel 2, Sentinel 1, Landsat 8)
 - Investigate multi-sensor pre-training => exploit complementarity of different sensors

Dataset available through EOC Geoservice

CONCLUSION

Some Open Questions

- What can we do to make SSL/foundation models more useful for real-world applications? Could model distillation help?
- Specialized models vs. Foundation models, when to resort to each?
- What evaluation protocols are most relevant for evaluating foundation models? Frozen encoder? Full fine-tuning? Partial fine-tuning?
- Are we getting the full picture from benchmark tables? E.g., models with similar mIoU can behave differently
- How far should we chase the ultimate foundation model that can process any sensor (even unseen ones)? What is the right balance between fitting a sensor well and generalizing to as many sensors as possible?

Questions?

36