Ramanath Tarekere, Sindhu und Krieger, Lukas und Floricioiu, Dana und Diaconu, Codrut-Andrei und Heidler, Konrad (2024) Deep learning based automatic grounding line delineation in DInSAR interferograms. The Cryosphere. Copernicus Publications. doi: 10.5194/egusphere-2024-223. ISSN 1994-0416.
PDF
- Preprintversion (eingereichte Entwurfsversion)
44MB |
Offizielle URL: https://egusphere.copernicus.org/preprints/2024/egusphere-2024-223/egusphere-2024-223.pdf
Kurzfassung
The regular and robust mapping of grounding lines is essential for various applications related to the mass balance of marine ice sheets and glaciers in Antarctica and Greenland. With Differential Interferometric Synthetic Aperture Radar (DInSAR) interferograms, it is possible to accurately capture the tide-induced bending of the ice shelf at a continent-wide scale and a temporal resolution of a few days. While current processing chains typically automatically generate differential interferograms, grounding lines are still primarily identified and delineated on the interferograms by a human operator. This method is time-consuming and inefficient, considering the volume of data from current and future SAR missions. We developed a pipeline that utilizes the Holistically-Nested Edge Detection (HED) neural network to delineate DInSAR interferograms automatically. We trained HED in a supervised manner using 421 manually annotated grounding lines for outlet glaciers and ice shelves on the Antarctic Ice Sheet. We also assessed the contribution of non-interferometric features like elevation, ice velocity and differential tide levels towards the delineation task. Our best-performing network generated grounding lines with a median distance of 222.2 m and mean distance of 340.5 m $\pm$ 373.88 m from the manual delineations. Additionally, we applied the network to generate grounding lines for undelineated interferograms, demonstrating the network's generalization capabilities and potential to generate high-resolution temporal and spatial mappings.
elib-URL des Eintrags: | https://elib.dlr.de/208792/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Deep learning based automatic grounding line delineation in DInSAR interferograms | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||||||
Erschienen in: | The Cryosphere | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.5194/egusphere-2024-223 | ||||||||||||||||||||||||
Verlag: | Copernicus Publications | ||||||||||||||||||||||||
Name der Reihe: | European Geosciences Union | ||||||||||||||||||||||||
ISSN: | 1994-0416 | ||||||||||||||||||||||||
Status: | akzeptierter Beitrag | ||||||||||||||||||||||||
Stichwörter: | Deep learning, DInSAR, automatic grounding line delineation, Antarctica | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden, R - Projekt Polar Monitor II | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||||||||||
Hinterlegt von: | Ramanath Tarekere, Sindhu | ||||||||||||||||||||||||
Hinterlegt am: | 26 Nov 2024 12:22 | ||||||||||||||||||||||||
Letzte Änderung: | 26 Nov 2024 12:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags