Winkelbauer, Dominik und Triebel, Rudolph und Bäuml, Berthold (2024) A Learning-based Controller for Multi-Contact Grasps on Unknown Objects with a Dexterous Hand. In: 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024. IEEE. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024), 2024-10-14 - 2024-10-18, Abu Dhabi, VAE. doi: 10.1109/IROS58592.2024.10801894. ISBN 979-8-3503-7770-5.
PDF
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10801894
Kurzfassung
Existing grasp controllers usually either only support finger-tip grasps or need explicit configuration of the inner forces. We propose a novel grasp controller that supports arbitrary grasp types, including power grasps with multi-contacts, while operating self-contained on before unseen objects. No detailed contact information is needed, but only a rough 3D model, e.g., reconstructed from a single depth image. First, the external wrench being applied to the object is estimated by using the measured torques at the joints. Then, the torques necessary to counteract the estimated wrench while keeping the object at its initial pose are predicted. The torques are commanded via desired joint angles to an underlying joint-level impedance controller. To reach real-time performance, we propose a learning-based approach that is based on a wrench estimator- and a torque predictor neural network. Both networks are trained in a supervised fashion using data generated via the analytical formulation of the controller. In an extensive simulation-based evaluation, we show that our controller is able to keep 83.1% of the tested grasps stable when applying external wrenches with up to 10N. At the same time, we outperform the two tested baselines by being more efficient and inducing less involuntary object movement. Finally, we show that the controller also works on the real DLR-Hand II, reaching a cycle time of 6ms.
elib-URL des Eintrags: | https://elib.dlr.de/208764/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||
Titel: | A Learning-based Controller for Multi-Contact Grasps on Unknown Objects with a Dexterous Hand | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2024 | ||||||||||||||||
Erschienen in: | 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IROS58592.2024.10801894 | ||||||||||||||||
Verlag: | IEEE | ||||||||||||||||
ISBN: | 979-8-3503-7770-5 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Robotics, Grasping, Machine Learning, Deep Learning | ||||||||||||||||
Veranstaltungstitel: | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024) | ||||||||||||||||
Veranstaltungsort: | Abu Dhabi, VAE | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 14 Oktober 2024 | ||||||||||||||||
Veranstaltungsende: | 18 Oktober 2024 | ||||||||||||||||
Veranstalter : | IEEE/RSJ | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Autonome, lernende Roboter [RO] | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||
Hinterlegt von: | Winkelbauer, Dominik | ||||||||||||||||
Hinterlegt am: | 18 Nov 2024 20:09 | ||||||||||||||||
Letzte Änderung: | 13 Jan 2025 10:12 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags