elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Turbine cooling air estimation in thermodynamic simulations

Schneider, Björn (2024) Turbine cooling air estimation in thermodynamic simulations. CEAS Aeronautical Journal. Springer. doi: 10.1007/s13272-024-00776-0. ISSN 1869-5582.

Dies ist die aktuellste Version dieses Eintrags.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
3MB

Offizielle URL: https://link.springer.com/article/10.1007/s13272-024-00776-0

Kurzfassung

Modern gas turbines utilize a high amount of the core mass flow rate for component cooling. Thus, a coherent thermodynamic gas turbine representation demands a well-modeled secondary air system, which is able to estimate mass flow rates depending on respective design decisions. In this paper, the focus is set on the estimation of turbine blade cooling air. For this purpose, five different methods are presented and analyzed. The described concepts can be split into empirical and semi-empirical approaches. The semi-empirical approaches, the Horlock [1], Jonsson [2] and the Halliwell [3] method, are able to predict the blade temperature based on a given cooling mass flow rate or the needed cooling air based on a given blade temperature. In contrast, the empirical methods, the Grieb [4] and the Walsh [5] method, can only predict the cooling air consumption. Due to the fully empirical approaches the field of application is limited to the considered engine structures. On the other hand, the empirical methods lead to a better convergence behavior in comparison to the semi-empirical approaches due to their relatively simple calculation methods. The selected cooling air estimations are implemented in the performance code DLRp2 [6,7,8]. Therefore, processes and methods are deployed that allow to estimate turbines with unlimited cooled stages. Additionally, an off-design procedure is proposed to consider the occurring stagnation temperature drop between stator and rotor based on a reference temperature offset. A simplified thermodynamic gas turbine model is used to analyze the different cooling air estimation methods. For this purpose, sensitivity analyses for the main cooling air parameters are carried out. Moreover, all methods that were developed for the most stressed operating point are compared. Finally, the simplified model is calibrated to NASA’s energy efficient engine [9].

elib-URL des Eintrags:https://elib.dlr.de/208738/
Dokumentart:Zeitschriftenbeitrag
Titel:Turbine cooling air estimation in thermodynamic simulations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schneider, BjörnBjoern.Schneider (at) dlr.dehttps://orcid.org/0000-0002-0496-6537173492771
Datum:13 November 2024
Erschienen in:CEAS Aeronautical Journal
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1007/s13272-024-00776-0
Verlag:Springer
Name der Reihe:CEAS Aeronautical Journal
ISSN:1869-5582
Status:veröffentlicht
Stichwörter:Cooling air estimation, Thermodynamic engine simulation, Blade temperature prediction, Secondary air system, Gas turbine design
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Umweltschonender Antrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CP - Umweltschonender Antrieb
DLR - Teilgebiet (Projekt, Vorhaben):L - Virtuelles Triebwerk
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Antriebstechnik > Triebwerk
Hinterlegt von: Schneider, Björn
Hinterlegt am:10 Dez 2024 19:33
Letzte Änderung:18 Dez 2024 13:53

Verfügbare Versionen dieses Eintrags

  • Turbine cooling air estimation in thermodynamic simulations. (deposited 10 Dez 2024 19:33) [Gegenwärtig angezeigt]

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.