Ma, Haochun und Prosperino, Davide und Haluszczynski, Alexander und Räth, Christoph (2024) Linear and nonlinear causality in financial markets. Chaos, 34, Seite 113125. American Institute of Physics (AIP). doi: 10.1063/5.0184267. ISSN 1054-1500.
PDF
- Verlagsversion (veröffentlichte Fassung)
7MB |
Offizielle URL: https://pubs.aip.org/aip/cha/article/34/11/113125/3319974/Linear-and-nonlinear-causality-in-financial?searchresult=1
Kurzfassung
Identifying and quantifying co-dependence between financial instruments is a key challenge for researchers and practitioners in the financial industry. Linear measures such as the Pearson correlation are still widely used today, although their limited explanatory power is well known. In this paper, we present a much more general framework for assessing co-dependencies by identifying linear and nonlinear causalities in the complex system of financial markets. To do so, we use two different causal inference methods, transfer entropy and convergent cross-mapping, and employ Fourier transform surrogates to separate their linear and nonlinear contributions. We find that stock indices in Germany and the U.S. exhibit a significant degree of nonlinear causality and that correlation, while a very good proxy for linear causality, disregards nonlinear effects and hence underestimates causality itself. The presented framework enables the measurement of nonlinear causality, the correlation causality fallacy, and motivates how causality can be used for inferring market signals, pair trading, and risk management of portfolios. Our results suggest that linear and nonlinear causality can be used as early warning indicators of abnormal market behavior, allowing for better trading strategies and risk management.
elib-URL des Eintrags: | https://elib.dlr.de/208546/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Linear and nonlinear causality in financial markets | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 13 November 2024 | ||||||||||||||||||||
Erschienen in: | Chaos | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 34 | ||||||||||||||||||||
DOI: | 10.1063/5.0184267 | ||||||||||||||||||||
Seitenbereich: | Seite 113125 | ||||||||||||||||||||
Verlag: | American Institute of Physics (AIP) | ||||||||||||||||||||
ISSN: | 1054-1500 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Multivariate time series, causality measures, financial markets, portfolio optimization | ||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||
DLR - Forschungsgebiet: | D KIZ - Künstliche Intelligenz | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - Kurzstudien [KIZ] | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit | ||||||||||||||||||||
Hinterlegt von: | Räth, Christoph | ||||||||||||||||||||
Hinterlegt am: | 18 Nov 2024 08:57 | ||||||||||||||||||||
Letzte Änderung: | 26 Nov 2024 12:36 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags