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ABSTRACT

Identifying and quantifying co-dependence between financial instruments is a key challenge for researchers and practitioners in the finan-
cial industry. Linear measures such as the Pearson correlation are still widely used today, although their limited explanatory power is well
known. In this paper, we present a much more general framework for assessing co-dependencies by identifying linear and nonlinear causal-
ities in the complex system of financial markets. To do so, we use two different causal inference methods, transfer entropy and convergent
cross-mapping, and employ Fourier transform surrogates to separate their linear and nonlinear contributions. We find that stock indices
in Germany and the U.S. exhibit a significant degree of nonlinear causality and that correlation, while a very good proxy for linear causal-
ity, disregards nonlinear effects and hence underestimates causality itself. The presented framework enables the measurement of nonlinear
causality, the correlation–causality fallacy, and motivates how causality can be used for inferring market signals, pair trading, and risk man-
agement of portfolios. Our results suggest that linear and nonlinear causality can be used as early warning indicators of abnormal market
behavior, allowing for better trading strategies and risk management.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0184267

Within the complex system of financial markets, understanding
the intricate ties between assets is crucial. Although the Pear-
son correlation has been a standard measure for these relation-
ships, its linear approach might not fully represent the entire
spectrum of causality. This study employs sophisticated causal
inference algorithms and methods to differentiate between lin-
ear and nonlinear causal contributions. By examining major
stock indices from Germany and the U.S., we uncover profound
and possibly nonlinear linkages. More than presenting a new
approach, this research indicates a significant shift in our per-
ception and quantification of financial market behaviors. Such
insights hold promise for refining market predictions, optimizing
trading strategies, and improving portfolio risk management.

I. INTRODUCTION

The field of econophysics is garnering heightened attention
in the physics domain, offering a novel lens to conventional
financial methodologies.1 This emerging perspective draws from

statistical physics tools, spanning signal processing, agent-based
market frameworks, and random matrix theory.2 Understanding
the co-dependence of financial assets is paramount across vari-
ous finance sectors, especially when quantifying portfolio-associated
risks.3 This development has seen industry practitioners keenly
monitor the evolution of co-dependence metrics. Predominantly,
mutual dependencies of financial instruments are characterized via
the Pearson correlation of their return time series. However, there
is increasing research underscoring the nonlinear characteristics of
these series.4 Notably, Mantegna and Stanley5 showed the power
law scaling dynamics of financial indices’ probability distributions,
while Ghashghaie et al.6 pinpointed turbulent cascades in foreign
exchange markets. Such insights challenge the adequacy of linear
dependency metrics. Addressing this, Haluszczynski et al.7 segre-
gated linear from nonlinear mutual information contributions using
Fourier transform surrogates, aiming to quantify nonlinear cor-
relations among financial assets. The authors demonstrated that
the integration of nonlinear correlations into portfolio construc-
tion led to an increase in investment performance. A pressing query
is the continued reliance on the Pearson correlation8 as a measure
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of co-dependence, given the intricate nature of causality measure-
ment within dynamic systems. Granger’s initial study in the 1960s9

addressed the difference between causality and correlation, leading
to the development of more advanced causal inference tools. This
ranged from information-theoretic tools10 to state-space reconstruc-
tion models.11 While causal inference has mainly focused on deter-
mining causality,12 the study of its linear vs nonlinear characteristics
is a whole different area of research. Beginning work has been per-
formed by Paluš and Vejmelka,13 Hlinka et al.,14 and Hartman and
Hlinka,15 who focused on mutual information to detect nonlinear
dynamics in time series and evaluated nonlinearity contributions in
climate connectivity and stock networks. A similar approach applied
on Earth’s climate system was used by Hlinka et al.16

In this paper, we analyze causality in financial markets by sepa-
rating linear and nonlinear contributions to causality using Fourier
transform surrogates. To do so, we use two different causal inference
techniques and apply them to historical stock data of the German
DAX and the U.S. Dow–Jones index. We also identify causality-
based statistical properties of financial data and motivate how linear
and nonlinear causality can be separated and measured. We find
that while correlation is a good proxy for linear causality, nonlin-
ear effects are disregarded and, thus, significant amount of nonlinear
causality is neglected. This is potentially dangerous when practition-
ers evaluate the risk of a portfolio only using correlation. Therefore,
we propose a simple integration of causality measures into market
signal inference, pair trading, and portfolio construction routines
and show that they yield superior results.

II. METHODS

We structure our methods section in three different parts:
data, causality measures, linear and nonlinear decomposition, and
financial frameworks.

A. Data

In this section, we describe the data used for this study. Before
we apply our framework to real-world data, we demonstrate it on a
synthetic example. Additionally, we use rolling windows in order to
evaluate our analysis dynamically.

1. Coupled difference

A simple example of a system that displays chaotic behavior is
the coupled difference as introduced in Ref. 17. This system was also
employed by Sugihara et al.11 to illustrate Convergent Cross Map-
ping (CCM), a causality inference method integral to this study. It is
defined by the following two equations:

xt+1 = xt ·
[

rx − rx · xt − βy→x · yt

]

,

yt+1 = yt ·
[

ry − ry · xt − βx→y · xt

]

,
(1)

where the standard parameters are rx = 3.8, ry = 3.5, βy→x = 0.02,
and βx→y = 0.1. We selected this system due to its exhibition of so-
called mirage correlations: while the system variables x and y have
a causal coupling as reflected in their governing equations, the time
series generated by the system may be positively coupled for long
periods but can spontaneously become uncorrelated or decoupled.

This can lead to problems when fitting models or inferring causality
from observational data.11

2. Financial data

For our real-world analysis, we select a subset of stocks from
the DAX and Dow–Jones indices that represent the 30 highest cap-
italized and, thus, most influential companies in Germany and the
U.S., respectively. Beginning on January 19, 1973, our data consist of
the daily adjusted closing prices of all stocks that were in the index
through April 20, 2022 to provide a consistent universe of stocks
over the entire period. This yields a total of NDAX = 11 and NDJ = 17
time series with 12 785 data points. We would like to note that the
survival bias18 is negligible for our analysis.

To ensure stationary time series, we convert the stock prices pt

to logarithmic returns

xt = log pt − log pt−1.

The time horizon of our data is long enough to examine a num-
ber of important market events—starting with the global recession
of the early 1980s, it also includes Black Monday (October 19, 1987),
when stock markets around the world collapsed for the first time
since World War II. From 1997 to 2001, markets were characterized
by excessive speculation and the overvaluation of many technology
companies, which led to the dotcom bubble.19 The bubble burst in
2002 with substantial price declines in July and September. Finally,
our data include the 2007/2008 subprime mortgage crisis, when the
market declined from its all-time high in October 2007 and crashed
after the collapse of Lehman Brothers on September 15, 2008. As a
result of slowing growth of the GDP of China and the Greek debt
default, investors sold shares globally between 2015 and 2016. The
data further include the so-called Volmageddon on February 5, 2018,
where a large sell-off in the U.S. stock market lead to a spike in
implied market volatility.20 Finally, the data include the impact of
the COVID-19 pandemic, which, among other events, triggered a
sudden global stock market crash on February 20, 2020. In addi-
tion, our period under review also includes a number of important
global political events. These include the fall of the Berlin Wall on
November 9, 1989, which triggered the collapse of the Soviet Union,
the attacks of September 11, 2001, and the Russian invasion of the
Ukraine on February 24, 2022.

3. Rolling windows

To obtain dynamically evolving results, we divide the data into
overlapping rolling windows21 and compute our measures for each
interval following the approach by Haluszczynski et al.7 We use
a sliding window of Tw = 1000 trading days, which corresponds
to roughly four years of data. The gap or stride between succes-
sive intervals is set to δT = 20 trading days, roughly amounting
to a month. Our analysis indicates that this window size is opti-
mal for obtaining reliable estimates of causality while capturing the
dynamic changes of the underlying system. As such, the wth interval
is represented as

x(w) =
(

x1+(w−1)·δT, . . . , xTw+(w−1)·δT
)

, (2)
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which yields a total of w = 594 overlapping windows. A (causal-
ity) measure ψ

(

x, y
)

7→ R, which maps two time series to a real
number, is, thus, transformed into a vector9 ∈ R

w.

B. Causality measures

We select two techniques that represent prominent categories
currently used in causal inference22—however, it is important to
note that our framework is applicable to any method capable of
detecting nonlinear causality. We are aware of the fact that the non-
linearity of financial time series23 and the non-causal effect of corre-
lation have already been studied using VAR processes24—therefore,
this work does not focus on the nonlinear nature of financial time
series, but on the combination of causal inference methods and their
application in popular financial frameworks, such as pair trading
and Markowitz portfolio optimization, as discussed in Sec. II D. The
essence of this work is to show how Pearson correlation can be eas-
ily replaced by linear and nonlinear causality measures to improve
said frameworks. This work does not include Granger causality, as it
is only capable of measuring linear causality and is, therefore, based
on linear autoregression. For further details, please refer to our pre-
vious work25 in which we demonstrate that the application of Fourier
Transform surrogates leaves Granger causality unchanged.

1. Pearson correlation

Before describing the causal inference methods, we introduce
the Pearson correlation.26 We use it as a benchmark since it is still
widely popular in the financial industry due to its simple calcu-
lation and interpretability.8 It quantifies the strength of the linear
co-movement between two variables and indicates whether growth
in one variable produces growth in the other or vice versa. It is
displayed in Fig. 3 and computed as follows:

ρ
(

x, y
)

≡
∑T

i=t(xt − x̄)(yt − ȳ)
√

∑T
t=1 (xt − x̄)2

√

∑T
t=1 (yt − ȳ)2

, (3)

where xt denotes the stock returns at time t and x̄ = 1
T

∑T
t=1 xt signi-

fies their expected value. The correlation is normalized and bounded
to the interval [−1, 1] and, thus, allows direct comparisons across
pairwise correlations between different stocks. As shown by Bonett
and Wright,27 a sample size of T ≤ 56 is sufficient to estimate the
measure reliably. It is crucial to acknowledge that the Pearson cor-
relation is calculated between two time series, specifically xt and yt,
at a given time point t. This is also referred to as the same-day corre-
lation (SDC), and it is the standard utilized in the financial industry.
Thus, it is the default method used in this work. Another version
of the Pearson correlation, referred to as the next-day correlation
(NDC), is calculated between shifted time series xt−1 and yt and has
been studied by inter alia Aityan et al.28

2. Transfer entropy

Transfer Entropy (TE) is a powerful information-theoretic
measure introduced by Schreiber10 which has gained popularity in
the field of causal inference, particularly in the analysis of time series
data. TE provides a way to quantify the directed flow of informa-
tion between variables, which allows assessing causal relationships

in a probabilistic framework. It is based on Conditional Mutual
Information (CMI)29 and the TE from X to Y is defined as

TEX→Y =
∑

xt ,yt ,xt−k

P(xt, yt, xt−k) log

(

P(yt|yt−1, xt−k)

P(yt|yt−1)

)

, (4)

where P(xt, yt, xt−k) represents the joint probability distribution of
Xt, Yt, and the past values of X (Xt−k). P(yt|yt−1, xt−k) and P(yt|yt−1)

denote the conditional probability distributions of Yt given its past
and the past of Y and X, respectively. The parameter k specifies
the length of the embedded vector and is set to 1 in this paper. An
alternative notation using entropies is

TEX→Y = H(Yt+1, Yt)+ H(Yt, Xt)− H(Yt+1, Yt, Xt)− H(Yt) ,

where H(Yt+1, Yt), H(Yt, Xt), H(Yt+1, Yt, Xt), and H(Yt) are the
joint and marginal entropies of the respective variables. To facili-
tate comparison between different estimations of TE, we apply the
subsequent normalization,

TEX→Y =
H(Yt+1, Yt)+ H(Yt, Xt)− H(Yt+1, Yt, Xt)− H(Yt)√

H(Yt+1, Yt) · H(Xt+1, Xt)
. (5)

The normalization to [0, 1] stems from our understanding of
TE as an asymmetric causal measure. This interpretation aligns
with the concept of covariance, which, when rescaled, results in the
normalized form, the aforementioned Pearson correlation.26

We would like to point out that the calculation of empirical
probability densities p and hence information-theoretic measures
raises unexpected difficulties exceeding the scope of this work. A
study on the reliability of CMI applied on climate networks was con-
ducted by Hlinka et al.16 While it is common to use histograms with
equally distributed bins to estimate densities, Mynter30 showed that
this method potentially leads to biases since the estimation is depen-
dent on the partition details—hence, finding a robust estimator is
non-trivial. However, for the purpose of our research, we find that
equally distributed bins perform reasonably well. Furthermore, it is
worth mentioning that TE might capture false causalities depending
on the dimension of conditioning.13

3. Convergent cross mapping

Convergent Cross Mapping (CCM) is an influential technique
utilized for causal inference within the realm of complex dynami-
cal systems.11 It aims to reveal causal connections between variables
by reconstructing the dynamics that underlie them. CCM operates
on the premise that variables with causal links will exhibit similar
dynamical behavior, leading to a notion referred to as shadowing. It
is displayed in Fig. 1.

The underlying idea is based on Takens’ theorem, which states
that the entire state space can be reconstructed from a single embed-
ded coordinate of the system, also called a shadow manifold.31 Due
to transitivity, two coordinates within a system can then be mapped
to each other by neighboring states in their respective shadow mani-
folds—this allows for cross prediction. The quality of the prediction,
evaluated using the Pearson correlation, quantifies the strength of
the causal relationship. The algorithm of CCM can be outlined as
follows:

Chaos 34, 113125 (2024); doi: 10.1063/5.0184267 34, 113125-3
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FIG. 1. Convergent cross mapping. The setup of this figure is analogous to Fig. 4.

1. Time delay embedding: Embed the time series data of X and Y
into higher-dimensional spaces using the embedding dimension
κ and time delay τ .

2. Library construction: Create a library of vectors from the recon-
structed state space X, denoted as LX, and a library of vectors
from the reconstructed state space Y, denoted as LY.

3. Nearest neighbor selection: For each vector X(i) in the shadow
manifold MX, find its nearest neighbor in MY, denoted as Y(j).
Similarly, for each vector Y(k) in MY, find its nearest neighbor
in MX, denoted as X(l).

4. Cross mapping: Assess the predictability of X based on Y by
comparing the distances between the vector pairs X(i) and Y(j),
and the vector pairs Y(k) and X(l). A statistical measure, such
as the correlation coefficient ρ, can be used to quantify the
predictability.

5. Convergence analysis: Repeat the cross mapping procedure for
different library lengths. Evaluate the correlation as a function
of the number of points used and assess the convergence of
the results. The convergence of the cross mapping indicates the
presence of a causal relationship between X and Y.

In the original application of CCM, convergence typically
requires visual inspection. However, we have implemented a more
systematic approach using expanding windows. For a given vector
of correlations ρ of size n, we calculate the standard deviation within
each window. Convergence is determined if the standard deviation
consistently decreases, eventually falling below a predefined thresh-
old θ . If convergence is achieved, the mean of the last s values is
calculated to smooth any outliers. Conversely, if convergence is not

reached, the causality measure in CCM is set to zero. This process is
mathematically expressed as

CCMX→Y ≡
{

1
n

∑s
i=1 ρn−s+i, if ρ converges

0, otherwise
∈ [−1, 1] . (6)

This process automates the evaluation of CCM causality for
various connections within a system at a reasonable speed. To
standardize the measure and render it comparable with other
non-directional causal inference methods, the correlation distance,
denoted as d =

√
2 (1 − ρ), can be employed.

CCM’s effectiveness in identifying causal relationships within
time series data is affected by multiple aspects. The presence of noise
or missing values in the data can alter the outcomes,32 and the choice
of appropriate embedding dimensions κ and time delays τ is sub-
ject to the characteristics of the specific data set.33 For example, the
optimal value for τ can be determined by finding the first local min-
imum in the Mutual Information (MI) respective to τ . Additionally,
the False Nearest Neighbor (FNN) algorithm can help finding the
smallest embedding dimension that maintains the attractor’s struc-
ture, ensuring that neighboring points in the original time series stay
neighbors in the embedded version.34

4. Limits of causality measures

We would like to emphasize our recognition of the limitations
associated with the causal inference techniques we are presenting, as
well as the broader challenges inherent in causal inference. Nonethe-
less, the purpose of this paper is to utilize these methods as a means
to demonstrate a framework for dissecting causality into linear and
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nonlinear components within the context of finance. It is important
to note that this paper does not delve into assessing the accuracy of
these methods in capturing genuine causal relationships, nor does
it explore the robustness of the methods themselves. Despite their
drawbacks, these two methodologies have shown successful appli-
cations across various real-world scenarios.35 For in-depth analyses
on TE and CCM, we recommend referring to Overbey and Todd,36

Krishna and Tangirala,37 and Paluš et al.38

Additionally, we acknowledge that TE and CCM operate
with reconstructed spaces and have theoretical vulnerabilities when
applied to variables within an attractor.35 Nevertheless, the analysis
conducted in this paper relies on simulated data rather than a purely
theoretical foundation. For a comprehensive discussion on the effi-
cacy of state-space reconstruction methods in establishing causality,
we direct interested readers to Cummins et al.39

In this work, we limit the history of the co-dependency mea-
sures to depth 1, as this is the standard used for causality mea-
sures. However, this framework can be easily extended to other
configurations.

C. Linear and nonlinear decomposition

To decompose the causal relationships within time series sys-
tems into components originating from linear and nonlinear drivers,
we employ surrogate techniques based on the Fourier Transform
(FT). Employing these surrogates on (causality) measures, we devise
methodologies to systematically capture the quantitative breakdown
of linear and nonlinear influences.

1. Fourier transform surrogates

FT surrogates destroy the nonlinear characteristics of a time
series x while keeping the linear ones unaffected.14,40 Although
numerous algorithms exist, the optimal algorithm for generating FT
surrogates is described in a study by Räth et al.41

1. Fourier transform: Given a real-valued time series x = {x1,
x2, . . . , xN}, compute its Fourier transform F(x) using the Fast
Fourier Transform (FFT) algorithm,42

F(x) = FFT(x).

2. Phase randomization: Preserve the amplitudes but randomize
the phases of the Fourier coefficients. This can be done by mul-
tiplying the complex Fourier coefficients by a random phase
factor eiφ , where φ is uniformly distributed over the interval
[0, 2π]. The phase-randomized Fourier Transform F′(x) is
given by

F′
k = |Fk| · eiφk , φk ∈ [0, 2π].

3. Inverse Fourier transform: Compute the inverse FT of the phase-
randomized coefficients to obtain the surrogate time series x̃,

x̃ = IFFT(F′(x)).

By keeping the amplitudes of the original data and only ran-
domizing the phases, the resulting surrogates maintain the
power spectral density of the original time series but break the
higher-order statistical dependencies.

To enhance the reliability of our findings, we average metrics
derived from surrogate time series over various instances K of ran-
dom phases. The surrogate of time series x, when subjected to the

random phases of realization k, is denoted as x̃
(k).

2. Linear and nonlinear measures

In order to evaluate how much of a (causal) measure is
attributed to linear or nonlinear effects, we adopt a specific approach
that involves the calculation of measures on surrogate time series.
Within the context of this research, we focus on a bivariate measure,
denoted as ψ

(

x, y
)

, which is a function mapping two time series to
a real number. This function’s purpose is to capture the relationship
between the two time series in numerical terms. The correspond-
ing surrogate or linear measure is defined as the average over K
surrogate realizations of both time series,

ψ̃(x, y) ≡
1

K

K
∑

k=1

ψ
(

x̃(k), ỹ(k)
)

. (7)

Here, the superscript k indicates that we add the same random
phases to both time series within a single realization. This choice
ensures that phase differences remain unaffected, preserving specific
properties such as the Pearson correlation.43 To ensure robustness,
we repeat the calculation for K = 50 surrogate realizations.

3. Nested measures

As aforementioned, employing rolling windows transforms the
measure ψ into a vector. This transition allows for the investigation
of interrelations between two measures through a third expression,

ψir ≡ ρ(ψ1,ψ2). (8)

Particularly, we can utilize the Pearson correlation ρ to study the
relationship between the original measure and its corresponding
surrogate, expressed as

ρ(ψ , ψ̃). (9)

This method also allows for expressing the coefficient of deter-
mination using the Pearson correlation, as mentioned in44

R2 = ρ2 ∈ [0, 1] . (10)

This enables us to quantify the extent of the measure
attributable to linear influences, more precisely, the fraction of the
variability in the measure ψ that can be explained from the sur-

rogate measure ψ̃ . What remains then emanates from nonlinear
characteristics,

ψnl ≡ 1 − ρ2(ψ , ψ̃). (11)

Furthermore, there is an application to the exploration of the
correlation–causality fallacy.45 This involves determining how much
of the causality is explained by correlation,

ψfall ≡ ρ2(ψ , ρ), (12)

serving as a gauge of the causal relationship that can be explained by
correlation. Specifically, this measure for the fallacy can be applied
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to the surrogate measure in order to evaluate how much of the linear
causality is captured by correlation,

ψfall,lin ≡ ρ2(ψ̃ , ρ). (13)

D. Financial frameworks

Here, we introduce two financial frameworks and demonstrate
how causality can be easily integrated, while simultaneously enhanc-
ing performance. In this work, we do not analyze the directionality
of the causal couplings, as their integration into the financial frame-
works is beyond the scope of this work. However, we are conducting
further research on the adaptation of portfolio optimization and
trading strategy frameworks using directional couplings.

1. Pair trading

Pair trading is a popular and widely utilized strategy in quan-
titative finance that aims to capitalize on relative price movements
between two closely related assets.46 This strategy is grounded in the
concept of mean reversion, which assumes that over time, the prices
of assets that are historically correlated tend to revert to their histor-
ical average relationship. The basic premise is to find two stocks that
are highly correlated. When they deviate from this correlation (i.e.,
one stock moves up while the other moves down or vice versa), we
take a long position in the underperforming stock and a short posi-
tion in the outperforming stock, expecting them to revert to their
historical correlation.47 Thus, a basic form of the strategy involves
the following steps:

1. Correlation calculation: We calculate the rolling historical and
the short-term correlation between two stocks.

2. Signal generation: When the current correlation ρt deviates from
its historical mean by a certain threshold, a trading signal is gen-
erated. A common approach is to use the z-score z of the spread,
which measures the number of standard deviations by which the
current correlation deviates from its historical mean,

zt =
ρt − ρ̄hist

σρhist

, (14)

where ρ̄hist and σρhist
denote the mean and standard deviation of

the historical correlation, respectively.
3. Trade execution: When the z-score crosses a predefined thresh-

old (e.g., above a positive threshold for a long trade or below a
negative threshold for a short trade), a trade is initiated. A long
trade involves buying the underperforming asset and simulta-
neously shorting the overperforming asset. We set the threshold
at zt ± 1.5.

4. Profit taking: The strategy aims to profit from the mean rever-
sion process. As the spread narrows and returns to its historical
mean, the positions are unwound, resulting in a profit.

We would like to note that we are aware of the simplifications of
the strategy and that for practical use more fine-tuning is necessary.
However, we find the parametrization of the strategy to be sufficient
for illustrative purposes. For our purposes, we exchange the histor-
ical Pearson correlation with the TE and CCM, respectively. It can
be reasonably assumed that an understanding of the causal relation-
ship between two stocks will lead to more optimal trading outcomes.

This is due to the fact that the mean reversion of the other stock can
be more accurately predicted than through the use of correlation.

2. Portfolio optimization

In the world of finance, Markowitz Portfolio Theory (MPT),
developed by Harry Markowitz in 1952, is a cornerstone concept for
investors and financial analysts.48 This theory revolutionized the way
investors think about constructing portfolios. It is based on a funda-
mental premise: rational investors seek to maximize their portfolio’s
expected return while minimizing its risk. The key insight here is
that an asset’s risk and return should not be evaluated in isolation
but rather in the context of the entire portfolio.

The expected return of a portfolio is calculated as a weighted
sum of the expected returns of its individual assets,

E(Rp) =
n

∑

i=1

wi · E(Ri), (15)

where E(Rp) is the expected return of the portfolio, wi is the weight
of asset i in the portfolio, and E(Ri) is the expected return of asset
i. Even though historic returns do not indicate future performance,
it is common to use the historical mean as a proxy for the expected
returns.47

The portfolio’s variance is a measure of its risk. It considers not
only the individual asset variances but also the correlation between
assets. The formula for portfolio variance is

σ 2
p =

n
∑

i=1

n
∑

j=1

wi · wj · σi · σj · ρij, (16)

where σ 2
p is the variance of the portfolio, wi and wj are the weights of

assets i and j in the portfolio, and σij is the covariance between assets
i and j. We can replace the correlation with a causality measure ψ
or use the sign of the correlation if the measure ψ is normalized to
[0, 1],

σ 2
p =

n
∑

i=1

n
∑

j=1

wi · wj · σi · σj · ψij · sgn
(

ρij

)

, (17)

where sgn(·) denotes the sign function.
The application of causality is also likely to prove advantageous

in this context, as it avoids the sub-optimal portfolio allocation that
can result from mirage correlations, as discussed in Sec. II A. Over an
extended investment horizon, this should lead to a superior portfolio
performance.

A popular measure of the riskiness of historical portfolio per-
formance is Value-at-Risk (VaR), which quantifies the potential loss
in value of an investment or portfolio over a specified time hori-
zon at a α49 confidence level. A 1 − α VaR = x means that there is a
α chance that the portfolio will lose more than x. Unlike standard
deviation, VaR measures tail risk and does not assume a normal
distribution, which is particularly important for risk management
purposes. We use the default value of α = 1%.

Two portfolios of great importance within MPT are the Mini-
mum Risk Portfolio and the Maximum Sharpe Ratio Portfolio. These
portfolios play a crucial role in portfolio analysis and optimization.
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• Minimum risk: The Minimum Risk Portfolio represents the port-
folio with the lowest possible risk for a given set of assets. Math-
ematically, it can be formulated as an optimization problem. The
solution to this problem provides the weights of assets in the
Minimum Risk Portfolio,

Minimize σ 2
p ,

Subject to E(Rp) = target return,

n
∑

i=1

wi = 1,

wi ≥ 0, for all i.

• Maximum Sharpe Ratio: The Maximum Sharpe Ratio Portfo-
lio represents the portfolio that offers the highest risk-adjusted
return. The Sharpe Ratio (S) measures this risk-adjusted perfor-
mance,

S =
E(Rp − Rf)

σp

. (18)

To find the Maximum Sharpe Ratio Portfolio, we maximize the
Sharpe Ratio by adjusting the asset weights. Mathematically,

Maximize S,

Subject to

n
∑

i=1

wi = 1,

wi ≥ 0 for all i.

We illustrate a simple way to incorporate causality measures
into portfolio construction through the utilization of these two port-
folios. As a result, we regularly adjust the portfolio by optimizing
its weightings with the mentioned algorithms to align it with the
prevailing market conditions. To achieve this, we apply the rolling
causality measures as previously demonstrated in this paper. Con-
sequently, we can assess the advantages of using causality measures
as the co-dependency metric for the portfolio, examining both its
performance and risk management implications.

III. RESULTS

In the following, we present the results of our analyses, which
we structure into Subsections III A–III C. As motivated by Fig. 2,
we observe that for complex and chaotic systems, it is difficult to
measure the co-dependence of variables through correlations as they
can exhibit different regimes of positive, negative, and no correla-
tion even though they are guided by exactly the same governing
equations. This is illustrated by the rolling window analysis of the
correlation, which is unrobust and changes significantly over time.
Hence, in order to measure their co-dependence reliably, another
measure is needed. Causality measures, such as CCM, are a valuable
technique to measure the causality of two variables in both direc-
tions and provide stable results over time. Furthermore, by using
FT surrogates, we can separate the causality in linear and nonlinear
contributions which helps to understand the intricate nature of the
co-dependences. The figure shows that the separation of causality in
linear and nonlinear contributions is stable over different windows
and also plausible when compared to governing Eq. (1).

FIG. 2. Mirage correlations and causality. The top row shows different regimes of the coupled difference system defined in Eq. (1). It appears that the variables are correlated
in the first regime, anti-correlated in the second, and lose all coherence in the third. The bottom row shows the rolling correlation (left), causality (center), and linear causality
(right). The causality is measured using Convergent Cross Mapping (CCM). While the correlation alternates between periods of positive, negative, and zero correlation, the
causality in both directions stays stable over time. This also holds true for the linear causality. When comparing the measurements to the governing equations, we see that
causality offers a more stable and accurate representation of the co-dependence between the two variables than correlation does.
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FIG. 3. Historical stock returns and correlation. The top row shows the logarithmic returns of the historical stock data of the German DAX (left) and the U.S. Dow–Jones
(right) index, respectively. Each line represents the logarithmic return of one stock over time. The bottom row shows the pairwise correlations between the stocks. Each line
represents the correlation between two stocks over time. The black line shows the average correlation inside the index. The vertical lines represent important economic or
political events.

FIG. 4. Transfer entropy. The first row shows the historical TE of stocks within the German DAX (left) and the U.S. Dow–Jones (right) indices, respectively. Each line represents
one direction of the TE between two stocks over time. The bottom row illustrates the corresponding surrogate TE. The vertical lines represent important economic or political
events.
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FIG. 5. Fallacy transfer entropy. The first row shows the historical fallacy TE of stocks within the German DAX (left) and the U.S. Dow–Jones (right) indices, respectively.
Each line represents one direction of the fallacy TE between two stocks over time. The bottom row illustrates the corresponding surrogate TE. The setup of this figure is
analogous to Fig. 4.

FIG. 6. Fallacy convergent cross mapping. The setup of this figure is analogous to Fig. 5.
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FIG. 7. Nonlinear causality. The first row shows the historical nonlinear TE of stocks within the German DAX (left) and the U.S. Dow–Jones (right) indices, respectively. Each
line represents one direction of the TE between two stocks over time. The bottom row illustrates the nonlinear CCM. The vertical lines represent important economic or
political events.

FIG. 8. Pair trading. The stock prices of two companies from the DAX (Bayer and BASF) are displayed in the top left figure. The top right figure presents the co-dependence
measures over time, with each color corresponding to a specific co-dependence measure that is included in the legend on the right-hand side. The bottom left chart illustrates
the strategy positions over time, with long position in Bayer and short position in BASF indicated by 1, the opposite indicated by −1, and no investment indicated by 0. The
graph in the lower right corner illustrates the cumulative return achieved by the strategy over time. The dotted horizontal lines mark the strategy’s most recent cumulative
return value. The vertical lines indicate notable economic or political events.
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A. Historical causality

To demonstrate the practical applicability of our framework,
we have employed it in an analysis of major German and U.S.
stock indices. The data and the dynamic correlation patterns are
visually depicted in Fig. 3. Notably, these correlations undergo sig-
nificant shifts during and after pivotal economic and political events.
This phenomenon can be attributed to the changing behavior of
investors and other market participants in response to these impact-
ful occurrences. Furthermore, this effect extends to our investigation
of causality measures, as demonstrated in Figs. 4 and 6. These figures
reveal that linear and nonlinear causality measures, such as Trans-
fer Entropy (TE) and Convergent Cross Mapping (CCM), exhibit
analogous responses to these events.

Specifically, when examining TE, it becomes apparent that TE
is highly responsive to these events, displaying sharp fluctuations.
In contrast, surrogate TE remains relatively stable and does not
react as drastically. Conversely, surrogate CCM appears to respond
more strongly than regular CCM, displaying significant jumps sim-
ilar to the observed patterns in correlation. One of the most striking
examples of this behavior is observed during Black Monday in 1987,
where we witness substantial increases in correlation, TE, and sur-
rogate CCM, particularly in the context of U.S. stocks. Two other
significant events that exhibit similar patterns are the global finan-
cial crisis in 2009 and the COVID-19 pandemic in 2020. These

observations suggest that these events triggered structural shifts in
the market, which is reasonable given their profound impacts on the
global economy. An intriguing observation is that TE experiences
more pronounced fluctuations compared to surrogate TE during
these events, while the opposite is observed for CCM. This suggests
that the linear dynamics in the stock markets were more profoundly
influenced, possibly due to investors simultaneously adjusting their
stock positions in response to the market crashes.

B. Correlation–causality fallacy and nonlinear

causality

Upon examination of Fig. 5, it becomes evident that both the
original and surrogate Transfer Entropy (TE) exhibit a moderate
correlation. Notably, there is an intriguing exception during the
period spanning from approximately 1990 to 2002 in the U.S. stock
market, where a substantial portion, approximately 75%, of the vari-
ability of the TE can be attributed to the variability of the correlation.
This spike coincided with the rise and eventual burst of the dot-
com bubble, suggesting that it might have served as an indicator of
abnormal market behavior during this period.

One of the most significant findings from this analysis is the
observation that fallacy of surrogate Convergent Cross Mapping
(CCM) is remarkably high, around 90%, in both the German and

FIG. 9. Minimum risk portfolio optimization. The top row displays the optimized minimum risk portfolio weights over time using both the correlation (on the left) and CCM (on
the right) as co-dependence measures. Each colored area represents a stock from the Dow–Jones, which is mapped in the legend to the right. The dotted vertical lines depict
significant economic or political events. In the bottom row, the left figure illustrates the distributions of the downside returns when using different co-dependence measures.
The vertical lines depict the VaR at α = 1% level. The plot to the right displays the portfolio’s value over time. The vertical lines denote significant economic or political
occurrences. The dotted horizontal lines denote the portfolio’s most recent value. Each color corresponds to a particular codependence measure, which is mapped in the
right-hand side legend.
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U.S. stock indices, as depicted in Fig. 6. This suggests that correlation
effectively acted as a suitable proxy for linear causality for the
majority of the past few decades. However, in periods where this
fallacy diminishes, such as the aftermath of the dotcom bubble in
2002 and the onset of the global financial crisis in 2008, relying solely
on correlation as a measure of co-dependence significantly under-
estimates portfolio risk, as nonlinear effects cannot be disregarded.
This effect is even more pronounced when examining the fallacy of
the original CCM, where we also observe a substantial drop during
these phases.

To gauge the extent of nonlinear contributions to our causality
measures, we delve into the analysis of how much of the causality can
be accounted for by its surrogate. In Fig. 7, we observe the evolution
of nonlinear causality over time, noting that nonlinear TE and CCM
exhibit similar but not identical behaviors. Both measures reveal
heightened levels of nonlinearity during the period between the dot-
com bubble burst and the commencement of the global financial
crisis. In contrast, before and after this period, we observe phases
with less nonlinearity. This indicates that these two major economic
events should be assessed differently, as the dotcom bubble led to
increased nonlinearity in its aftermath, while the global financial
crisis, precipitated by the U.S. housing market crisis, ushered in a
phase of more linear market behavior. Particularly for CCM, this
behavior is quite drastic, with jumps exceeding 20%. In conclusion,
our analysis suggests that nonlinear causality can be a valuable tool

for anticipating and evaluating financial impacts, provided it is con-
tinually monitored and assessed in the context of evolving market
dynamics.

C. Pair trading and portfolio optimization

To effectively apply causality measures in practical financial
scenarios, we present two common financial frameworks where the
interdependence between assets plays a pivotal role. The first con-
cept we explore is pair trading, a logical choice given its reliance on
the idea that two assets tend to revert to a default correlation, and
deviations from this norm can be profitably exploited. In Fig. 8, we
use two German stocks from the chemical industry, Bayer and BASF,
to illustrate how causality measures can be seamlessly integrated. It
is noteworthy that even though the differences in the evolution of
co-dependence measures are relatively similar, over time, these sub-
tle distinctions significantly impact trading performance. Of partic-
ular interest is the fact that the trading strategy employing surrogate
Convergent Cross Mapping (CCM) outperforms the one utiliz-
ing correlation by a substantial margin, approximately six times,
despite the measures’ apparent similarity. Additionally, we observe
that Transfer Entropy (TE) and CCM perform better than corre-
lation, while surrogate TE lags behind and even delivers negative
returns. This straightforward example underscores the potential of a
causality-based pair trading strategy.

FIG. 10. Maximum sharpe ratio portfolio optimization. The setup of this figure is analogous to Fig. 9. The top row displays the optimized maximum sharpe ratio portfolio
weights over time using both the correlation (on the left) and CCM (on the right) as co-dependence measures. Each colored area represents a stock from the DAX, which is
mapped in the legend to the right. The dotted vertical lines depict significant economic or political events. In the bottom row, the left figure illustrates the distributions of the
returns when using different co-dependence measures. The vertical lines depict the standard deviations of the returns. The plot to the right displays the portfolio’s value over
time. The vertical lines denote significant economic or political occurrences. The dotted horizontal lines denote the portfolio’s most recent value. Each color corresponds to
a particular co-dependence measure, which is mapped in the right-hand side legend.
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As previously highlighted, relying solely on correlation can
potentially lead to an underestimation of risk, a perilous scenario
when managing a portfolio. In Fig. 9, we employ stocks from the
U.S. Dow–Jones index and minimize risk by dynamically optimizing
the portfolio weights on a monthly basis. It becomes evident that the
allocations of a portfolio using correlation and CCM exhibit visible
disparities over time. This divergence is reflected in the portfolio’s
downside returns and overall performance. Notably, we observe that
a portfolio employing surrogate Transfer Entropy (TE), CCM, and
surrogate CCM achieves a superior 1% Value-at-Risk (VaR) while
slightly enhancing portfolio performance.

Similarly, in the context of optimizing the Sharpe Ratio, as
depicted in Fig. 10, the inclusion of causality measures results in a
more favorable risk-return profile. When optimizing the stocks of
the German DAX index, we note a reduction in portfolio standard
deviation and an increase in portfolio value over time, particularly
when employing original and surrogate CCM.

IV. CONCLUSION AND OUTLOOK

The present study has addressed the issue of identifying and
quantifying co-dependence among financial instruments, which
continues to be a paramount challenge for both researchers and
practitioners in the financial industry. While traditional linear mea-
sures like the Pearson correlation have maintained their promi-
nence, this paper has introduced a novel framework aimed at analyz-
ing both linear and nonlinear causal relationships within financial
markets. To achieve this, we have employed two distinct causal
inference methodologies, namely, transfer entropy and convergent
cross mapping, and have utilized Fourier transform surrogates to
disentangle their respective linear and nonlinear contributions.

Our findings have unveiled that stock indices in Germany
and the U.S. exhibit a substantial degree of nonlinear causality,
a phenomenon that has largely eluded previous investigations. It
is important to recognize that while correlation, exemplified by
the Pearson correlation coefficient, serves as an excellent proxy
for linear causality, it falls short in capturing the intricate nonlin-
ear dynamics that underlie financial markets. Consequently, relying
solely on correlation can lead to an underestimation of causality
itself.

The framework introduced in this study not only facilitates the
quantification of nonlinear causality but also sheds light on the per-
ilous “correlation–causality fallacy.” By delving into the nuances of
causality, we have motivated how these insights can be harnessed
for practical applications, including inferring market signals, imple-
menting pair trading strategies, and enhancing the management of
portfolio risk.

One of the insights derived from our findings underscores
the role that both linear and nonlinear causality can play as early
warning indicators for unusual market dynamics. Furthermore, our
results suggest that a straightforward incorporation of these causal-
ity measures into strategies, such as pair trading and portfolio opti-
mization, can yield better outcomes compared to a reliance solely on
Pearson correlation. This understanding can significantly empower
traders and risk managers, enabling them to craft more effective
trading strategies and to adopt a more proactive approach to risk
mitigation.

Looking ahead, the implications of our findings extend to var-
ious facets of financial research and practice. Further exploration
of nonlinear causality may uncover new dimensions of financial
market interactions, potentially leading to the development of inno-
vative trading algorithms and risk management tools. Additionally,
the integration of causality measures into existing financial mod-
els and frameworks holds the promise of enhancing their predictive
accuracy and robustness.

In conclusion, this paper has introduced a comprehensive
framework for disentangling linear and nonlinear causality within
financial markets. The revelation of substantial nonlinear causality
and the recognition of the limitations of traditional correlation mea-
sures underline the importance of taking a more nuanced approach
to co-dependency analysis. The insights gained from this study
have the potential to enhance the way we perceive and navigate
the intricacies of financial markets, contributing to more informed
decision-making, better risk management practices, and more finan-
cial stability.
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