Valls Mascaró, Esteve and Ahn, Hyemin and Lee, Dongheui (2024) A Unified Masked Autoencoder with Patchified Skeletons for Motion Synthesis. In: 38th AAAI Conference on Artificial Intelligence, AAAI 2024, 38 (6), pp. 5261-5269. The 38th Annual AAAI Conference on Artificial Intelligence, 2024-02-20, Vancouver, Canada. doi: 10.1609/aaai.v38i6.28333. ISBN 978-1-57735-887-9. ISSN 2159-5399.
Full text not available from this repository.
Official URL: https://ojs.aaai.org/index.php/AAAI/article/view/28333
Abstract
The synthesis of human motion has traditionally been addressed through task-dependent models that focus on specific challenges, such as predicting future motions or filling in intermediate poses conditioned on known key-poses. In this paper, we present a novel task-independent model called UNIMASK-M, which can effectively address these challenges using a unified architecture. Our model obtains comparable or better performance than the state-of-the-art in each field. Inspired by Vision Transformers (ViTs), our UNIMASK-M model decomposes a human pose into body parts to leverage the spatio-temporal relationships existing in human motion. Moreover, we reformulate various pose-conditioned motion synthesis tasks as a reconstruction problem with different masking patterns given as input. By explicitly informing our model about the masked joints, our UNIMASK-M becomes more robust to occlusions. Experimental results show that our model successfully forecasts human motion on the Human3.6M dataset while achieving state-of-the-art results in motion inbetweening on the LaFAN1 dataset for long transition periods.
Item URL in elib: | https://elib.dlr.de/208539/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | A Unified Masked Autoencoder with Patchified Skeletons for Motion Synthesis | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 24 March 2024 | ||||||||||||||||
Journal or Publication Title: | 38th AAAI Conference on Artificial Intelligence, AAAI 2024 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 38 | ||||||||||||||||
DOI: | 10.1609/aaai.v38i6.28333 | ||||||||||||||||
Page Range: | pp. 5261-5269 | ||||||||||||||||
ISSN: | 2159-5399 | ||||||||||||||||
ISBN: | 978-1-57735-887-9 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | motion synthesis | ||||||||||||||||
Event Title: | The 38th Annual AAAI Conference on Artificial Intelligence | ||||||||||||||||
Event Location: | Vancouver, Canada | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Date: | 20 February 2024 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||
DLR - Research theme (Project): | R - Intuitive human-robot interface [RO] | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) | ||||||||||||||||
Deposited By: | Strobl, Dr.-Ing. Klaus H. | ||||||||||||||||
Deposited On: | 14 Nov 2024 11:42 | ||||||||||||||||
Last Modified: | 14 Nov 2024 11:42 |
Repository Staff Only: item control page