elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Generalization in deep learning-based aircraft classification for SAR imagery

Pulella, Andrea und Sica, Francescopaolo und Villamil Lopez, Carlos und Anglberger, Harald und Hänsch, Ronny (2024) Generalization in deep learning-based aircraft classification for SAR imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 218, Seiten 312-323. Elsevier. doi: 10.1016/j.isprsjprs.2024.10.030. ISSN 0924-2716.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
4MB

Kurzfassung

Automatic Target Recognition (ATR) from Synthetic Aperture Radar (SAR) data covers a wide range of applications. SAR ATR helps to detect and track vehicles and other objects, e.g. in disaster relief and surveillance operations. Aircraft classification covers a significant part of this research area, which differs from other SAR-based ATR tasks, such as ship and ground vehicle detection and classification, in that aircrafts are usually a static target, often remaining at the same location and in a given orientation for longer time frames. Today, there is a significant mismatch between the abundance of deep learning-based aircraft classification models and the availability of corresponding datasets. This mismatch has led to models with improved classification performance on specific datasets, but the challenge of generalizing to conditions not present in the training data (which are expected to occur in operational conditions) has not yet been satisfactorily analyzed. This paper aims to evaluate how classification performance and generalization capabilities of deep learning models are influenced by the diversity of the training dataset. Our goal is to understand the model’s competence and the conditions under which it can achieve proficiency in aircraft classification tasks for high-resolution SAR images while demonstrating generalization capabilities when confronted with novel data that include different geographic locations, environmental conditions, and geometric variations. We address this gap by using manually annotated high-resolution SAR data from TerraSAR-X and TanDEM-X and show how the classification performance changes for different application scenarios requiring different training and evaluation setups. We find that, as expected, the type of aircraft plays a crucial role in the classification problem, since it will vary in shape and dimension. However, these aspects are secondary to how the SAR image is acquired, with the acquisition geometry playing the primary role. Therefore, we find that the characteristics of the acquisition are much more relevant for generalization than the complex geometry of the target. We show this for various models selected among the standard classification algorithms.

elib-URL des Eintrags:https://elib.dlr.de/208392/
Dokumentart:Zeitschriftenbeitrag
Titel:Generalization in deep learning-based aircraft classification for SAR imagery
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Pulella, AndreaAndrea.Pulella (at) dlr.dehttps://orcid.org/0000-0001-6295-617XNICHT SPEZIFIZIERT
Sica, FrancescopaoloFrancescopaolo.Sica (at) unibw.dehttps://orcid.org/0000-0003-1593-1492NICHT SPEZIFIZIERT
Villamil Lopez, CarlosCarlos.VillamilLopez (at) dlr.dehttps://orcid.org/0000-0002-6867-7689NICHT SPEZIFIZIERT
Anglberger, HaraldHarald.Anglberger (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hänsch, RonnyRonny.Haensch (at) dlr.dehttps://orcid.org/0000-0002-2936-6765NICHT SPEZIFIZIERT
Datum:8 November 2024
Erschienen in:ISPRS Journal of Photogrammetry and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:218
DOI:10.1016/j.isprsjprs.2024.10.030
Seitenbereich:Seiten 312-323
Verlag:Elsevier
ISSN:0924-2716
Status:veröffentlicht
Stichwörter:Synthetic Aperture Radar (SAR); Automatic Target Recognition (ATR); Object classification
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Flugzeug-SAR
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme
Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie
Hinterlegt von: Pulella, M.Eng. Andrea
Hinterlegt am:11 Nov 2024 17:22
Letzte Änderung:11 Nov 2024 17:22

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.