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A B S T R A C T

Automatic Target Recognition (ATR) from Synthetic Aperture Radar (SAR) data covers a wide range of
applications. SAR ATR helps to detect and track vehicles and other objects, e.g. in disaster relief and
surveillance operations. Aircraft classification covers a significant part of this research area, which differs from
other SAR-based ATR tasks, such as ship and ground vehicle detection and classification, in that aircrafts are
usually a static target, often remaining at the same location and in a given orientation for longer time frames.
Today, there is a significant mismatch between the abundance of deep learning-based aircraft classification
models and the availability of corresponding datasets. This mismatch has led to models with improved
classification performance on specific datasets, but the challenge of generalizing to conditions not present
in the training data (which are expected to occur in operational conditions) has not yet been satisfactorily
analyzed. This paper aims to evaluate how classification performance and generalization capabilities of deep
learning models are influenced by the diversity of the training dataset. Our goal is to understand the model’s
competence and the conditions under which it can achieve proficiency in aircraft classification tasks for
high-resolution SAR images while demonstrating generalization capabilities when confronted with novel data
that include different geographic locations, environmental conditions, and geometric variations. We address
this gap by using manually annotated high-resolution SAR data from TerraSAR-X and TanDEM-X and show
how the classification performance changes for different application scenarios requiring different training and
evaluation setups. We find that, as expected, the type of aircraft plays a crucial role in the classification
problem, since it will vary in shape and dimension. However, these aspects are secondary to how the SAR image
is acquired, with the acquisition geometry playing the primary role. Therefore, we find that the characteristics
of the acquisition are much more relevant for generalization than the complex geometry of the target. We
show this for various models selected among the standard classification algorithms.
1. Introduction

Synthetic Aperture Radar (SAR) is an active remote sensing tech-
nology that uses microwaves to create images of the Earth’s surface.
Due to its ability to see through clouds, SAR is one of the preferred
sensor types in situational awareness applications (Roemer et al., 2016;
Pulella and Sica, 2021). Automatic Target Recognition (ATR) refers to
the automated detection and classification of objects in imagery and is a
specific case of situational awareness. In the SAR context, ATR involves
the use of image analysis techniques to identify targets such as vehicles,
buildings, or other objects of interest based on the characteristics of
the SAR backscatter signature. The variety of SAR ATR applications
is wide, from detecting and tracking vehicles and similar targets to
supporting disaster relief and surveillance (El-Darymli et al., 2016). The
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latter includes, for example, the detection and tracking of ships at sea,
which is essential for maritime security.

SAR ATR was first applied to high-resolution SAR in a military
context. The Moving and Stationary Target Acquisition and Recognition
(MSTAR) dataset (Diemunsch and Wissinger, 1998) was created by
the Defense Advanced Research Projects Agency (DARPA) Air Force
Research Laboratory in 1998 to promote and evaluate progress in SAR
ATR algorithm development. The dataset consists of a collection of
ten military vehicles acquired from different angles. Classical algo-
rithms are mostly based on simple image processing operations such
as template matching e.g. as presented in O’Sullivan et al. (2001) and
in Srinivas et al. (2014). More recent work uses machine learning
(ML) and, in particular, deep learning (DL), usually in the framework
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of supervised learning, i.e. approaches that leverage training datasets
of annotated images before being tasked to detect and classify these
bjects within new images. Examples of these algorithms include Radial
ased Function (RBF) neural networks (Sun et al., 2007), Multilayer

Perceptrons (MLPs) (Principe et al., 1998), and Support Vector Ma-
chines (SVMs) (Zhao and Principe, 2001; Wagner, 2016). In 2015 first
esults using a deep convolutional neural network (CNN) on the MSTAR
ataset were presented (Morgan, 2015). Since then, the number of
orks using deep learning-based approaches for SAR ATR has increased
ramatically. In Chen et al. (2016), the authors presented a sparsely

connected layer network that automatically generates features by learn-
ing hierarchical representations from SAR images. In Soldin (2018), the
authors analyze the effects that different classifier methodologies based
on a ResNet-18 have on the performance of the existing and emerging
argets. In particular, they consider (1) a scratch model that retrains all
ayers of the base CNN architecture, (2) a fine-tune model that freezes
ll layers in the ResNet-18 except the softmax, and (3) a dynamic image
odel that adds to the fine-tune model an intermediate layer based

n the image split into two sub-apertures for data augmentation. All
hree models are trained on the 10 MSTAR classes and results show that
he usage of dynamic imaging provides the best performance. Gu et al.

show in Gu et al. (2021) that the usage of an existing neural network,
such as the VGG16, already guarantees accuracies of 90% for three

ilitary vehicles of the MSTAR with similar appearances. In Jacob et al.
(2023), the authors compare the performance of different standard net-
works, such as InceptionV3, VGG16, VGG19, ResNet50, and MobileNet.

he analysis evaluation metrics used during the analysis are the con-
usion matrix, precision, recall, F1-Score, and mean average precision
mAP). As expected, all the models return good performance when us-
ng the MSTAR dataset. VGG16 and MobileNet models appear the best
NNs for this classification task. More sophisticated approaches using
NNs include the Multiple Feature-based CNN (MFCNN) (Cho and Park,

2018), a network capable of detecting targets without applying prior
noise suppression by aggregating strong features with high noise levels
and smoothed features with lower noise effects. In Pei et al. (2018), the
authors address the issue of multiple views in SAR data. A multi-input
CNN is presented that learns and extracts classification information
from the multi-view images acquired by the SAR platform in different
view intervals (different elevation and aspect angles). The advantage of
this approach is that it requires only a small number of raw SAR images
to generate training samples. The improvement of using multiple angles
over a single angle is also demonstrated in Wang et al. (2021), where
he authors present a multiview attention convolutional neural network
ith long short-term memory (LSTM) network to extract and fuse the

features from images with adjacent azimuths. Convolutional highway
networks are alternative solutions for guaranteeing robust training, by
etrieving deeper features from reduced training datasets (Lin et al.,

2017). Attention mechanism networks can be used as a solution to cap-
ure more valuable information and reduce the computational burden.

First studies on attention-based real-valued CNNs using SAR data are
reported in Zhang et al. (2020a) and Li et al. (2022). In Lang et al.
(2022), the authors design a cascaded multidomain attention module,
ased on discrete cosine transform and discrete wavelet transform
mbedded in a four-layer CNN model to perform hierarchical feature
epresentation learning and to further complete the class-specific fea-
ure extraction from both the frequency and wavelet transform domains
f the input feature maps. The incorporation of multi-domain attention
nhances the feature extraction capability and effectively improves the

recognition accuracy of the CNN. Capsule networks are designed to
replace the traditional scalar output neurons of a CNN with vectors
that output multiple values and, as a consequence, improve object
recognition in images at the expense of a larger amount of computation.
In Shah et al. (2019), the authors present the first capsule network
or SAR ATR. It consists of a convolutional layer and two capsule
ayers, which can be trained on a smaller dataset than that required
y a traditional CNN, with a higher accuracy than 98% using MSTAR
313 
data. In Guo et al. (2020), the authors suggest a capsule network
for high-accuracy recognition based on a vector-based full-connected
operation. Results show a robustness greater than a traditional CNN.
An advanced version of the capsule network is reported in Ren et al.
(2021). Multiple dilated convolutions are used to extract multi-scale
features in the encoder network, and refinements are used to extract
discriminative features by adaptively highlighting informative features.
The correlation among multimodal radar data is crucial for improving
lgorithm accuracy. In Feng et al. (2021) the authors present a decision

fusion framework based on target parts divided according to a set of
attributed scattering center (ASC) parameters. The main disadvantage
of this solution lies in the simple form of the fusion approach, which

easures the average of the predictions retrieved from different DL
ethods and model-based approaches. A solution proposed in Feng

et al. (2022, 2023) is to apply a physics-based approach consisting of
the fusion of multiple network layer features to inform deep recognition
networks. In Zhang et al. (2024), the authors suggest a multi-scale
feature approach that fuses scattering features and deep features by
weighted integration to enrich the diversity of features. In Shi (2022),
he author presents a multi-feature fusion-based approach to capture
arget shape, corner features, and texture. In particular, the author uses
he Hu moment to describe the shape of the SAR targets, the Harris
orner point to extract the corners of the object, and the Gabor features
or texture analysis. All the feature descriptors are given as input to
hree conventional classifiers: Decision Tree, SVM, and MLP. Overall
he study shows that the Decision Tree algorithm attained the highest
ecognition accuracy. Additionally, several studies on the role of data
ugmentation (Ding et al., 2016), imbalance loss (Zhang et al., 2020c;

Cao et al., 2022) structured pruning (Zhang et al., 2020b), and transfer
earning (Zhang et al., 2020b; Zhong et al., 2019; Huang et al., 2020;

Song et al., 2022; Shang et al., 2018; Chen et al., 2022) have been
onducted.

While most of these algorithms have been trained and tested on the
STAR dataset, some new datasets have been released for SAR ATR,

.g. datasets consisting of very-high-resolution SAR images of the Chi-
ese C-band Gaofen-3 (Guo et al., 2019). However, the number of deep
earning-based algorithms dedicated to this task is still much larger

than the number of available datasets. This aspect has led to the fact
that, although the detection and classification capabilities under spe-
cific operational conditions have increased, the generalization to larger
and more diverse datasets still needs to be adequately investigated.

Generalization refers to the ability of a trained model to accurately
classify or recognize new and previously unseen examples that belong
to the same classes as those present in the training data, but have
a slightly different appearance. Reasons for a lack in generalization
nclude overfitting of the model, i.e. that it has learned to memo-

rize specific examples rather than learning generalizable patterns or
eatures that can be applied to new data. Another cause is that the
odel might have learned shortcuts, i.e. spurious correlations that are
resent in the training data but not during deployment (in our case,
or example, when airplanes are parked at the same positions and the
odel learns to recognize the background/surrounding rather than the

bject). Alternatively, it can happen when the training data is not
epresentative of the real-world examples the model is expected to
ncounter, which has enormous implications when SAR ATR is to be
sed in operational scenarios.

The goal of this paper is to study the classification performance in
terms of the generalization ability of deep learning models. Specifically,
we aim to understand how well and under what circumstances a given
trained model can

• be successfully applied to aircraft classification tasks from high-
resolution SAR images, i.e. distinguishing between different
classes of airplanes; and

• generalize to new and previously unseen data by considering
different locations, environmental conditions, and geometries.
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Table 1
Occurrences of the TSX/TDX ST images for each airport, orbit, and incidence angle.

Airport Orbit Incidence angle Number of images

(i)
Ascending 32.5◦ 3

Descending 28.5◦ 3
41.1◦ 3

(ii)

Ascending

16.1◦ 1
31.1◦ 13
43.0◦ 3
52.1◦ 3

Descending
16.2◦ 1
31.2◦ 7
43.0◦ 3

(iii) Ascending 35.9◦ 3
Descending 47.5◦ 5

(iv) Ascending 31.1◦ 3
Descending 45.8◦ 3

(v) Descending 32.6◦ 3
44.6◦ 3

The remainder of the manuscript is structured as follows: Section 2
presents all the used data and its preparation, while Section 3 describes
the method used for classification as well as assessing its performance
and generalization capability. The experiments and related discussion
are presented in Section 4. Finally, we draw conclusions about the
investigation and present an outlook for future work in Section 5.

2. Dataset

The used dataset consists of 60 acquisitions with TerraSAR-X (TSX)
and TanDEM-X (TDX) in Staring Spotlight (ST) mode (Mittermayer
et al., 2014) with a nominal resolution of 23 cm in azimuth and 58 cm
in range, covering four consecutive years from August 8, 2015 to
September 3, 2019. The acquired data allows to classify aircraft types
located at different airport scenes with varying imaging conditions.
The dataset contains five airport scenes where twelve different aircraft
classes have been observed in the manual annotation process. The
main features of this dataset are the variety of imaging geometries and
environmental conditions, thus capturing differences in the signature of
the respective objects for e.g. multiple aspects, snow-cover, etc. Table 1
lists the number of data takes per imaging geometry for the respective
five airports (i)-(v).

As in all data-driven approaches, the training database plays an es-
sential role for SAR aircraft classification. In the following, we describe
the construction of the dataset used for training and evaluation, i.e. the
annotation process to create the labels as well as preprocessing to bring
the data into a form that is analysis-ready for ML methods.

2.1. Dataset annotation and curation

High-quality annotations are crucial for training and evaluating SAR
aircraft classification approaches. Given the difficulties to construct
large training datasets of annotated SAR images, label quality is of high
importance as the influence of label noise is more severe for smaller
datasets.

We used 60 images of five different airports that are annotated
by experienced human operators. Quality control consisted of a cross-
check with SAR signatures synthetically generated by an internal SAR
simulator, which is capable of synthesizing a target given the geometric
properties of the acquisition and an external 3D model of the aircraft.
In total, 2334 aircrafts are marked in the images of which the 1614
instances belonging to the four most frequent classes are selected. The
remaining eight aircraft classes are considered as non-target patches
to reinforce the multi-label classification training. More details can be
found in Section 2.2. The result is a fairly-well populated multi-class
314 
Fig. 1. Number of labels for each airport (rows) and aircraft class (columns).

dataset, which is summarized in Fig. 1 (aircraft classes are denoted by
(A)–(D), airports by (i)–(v)).

Fig. 1 shows the number of available instances for the five available
airports with the four selected aircraft classes and demonstrates a small
class imbalance in both directions. Most samples are available for the
aircraft type (D) and airport (ii). Certain aircrafts are annotated only
in certain airports, as in the case of class (B), which is only present in
airport (ii).

2.2. Patch extraction

ATR can be seen as a two-step process where first potential objects
are detected and then subsequently classified (note, however, that not
all approaches follow these two steps explicitly). In this work, we focus
on the classification part of ATR only and not on the actual detection
which means that we require a database of patches showing at most one
object instance instead of whole images containing multiple instances.

We apply a semi-automatic strategy to generate patches containing
the previously detected targets as positive samples and also a set of
negative samples, i.e. patches that do not contain any of the previously
defined aircraft classes. Given the spatial resolution of TSX/TDX images
as well as the size of the objects of interest, we use a patch size of
256 × 256 pixels that completely covers instances of the smallest to
the largest target class with a small margin at the borders.

The negative samples consist of two different sources: (1) the other
eight aircraft types that are sparsely present in the dataset, and (2)
background patches selected by joint evaluation of the coherent scat-
tering characteristic in a given patch (Sanjuan-Ferrer et al., 2015)
and the associated coefficient of variation, defined as the ratio of the
local standard deviation to the local mean of the SAR amplitude. The
background samples are generated by randomly selecting 150 negatives
from each image in the dataset. The set of negatives in a given image
is the combination of three different subsets. The first subset consists
of those negatives with a high number of coherent scatterers, which
is a good indication of man-made objects. Since the objects of interest
usually have a considerable number of scatterers within the patch, man-
made objects with similar properties represent hard negative examples
that are highly informative. Thus, 60% of all negative samples belong to
this subset. The second negative subset consists of patches with a lower
number of coherent scatterers than in the first subset, but with a high
coefficient of variation. This subset includes different types of surfaces
and some specific artificial objects. It contributes 35% to all negative
samples. Finally, the third subset provides the remaining 5% and
consists of patches with few coherent scatterers and a low coefficient of
variation, which typically correspond to relatively homogeneous clutter
areas.
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Fig. 2. Distribution of the labels for the aircraft class (D) when the incidence angle and the angle of target orientation are varied and all airports are considered.
The proposed patch formation guarantees a diverse dataset with re-
spect to the two main geometric parameters of the TSX ST mode, i.e. the
incidence angle and the target orientation. The latter is intuitively
the actual orientation of the object with respect to the line of sight
(LOS) of the SAR sensor and, especially in our case study, it strongly
depends on the specific airport. Fig. 2 collects in a 2-D histogram
the number of instances for the airplane class (D) as a function of
the two angles. For simplicity, we have divided the range of possible
incidence angles and target orientation angles into several discrete
intervals using a bin size of 5◦ and 10◦, respectively. We observe an
irregular distribution of the object instances in the airplane class (D) for
both dimensions. The different sampling along the incidence angle axis
is only a limitation of the selected set of TSX/TDX ST images and can
be solved by increasing the number of acquisitions trying to cover the
gaps. The irregular distribution of instances along the target orientation
axis is the more critical problem. Solving it would require acquiring
and annotating more images containing this specific object, e.g. aircraft
class (D), in different orientations. This aspect is a limitation of virtually
all real datasets as some classes and object orientations are simply
more common (e.g., airplanes are often parked in certain positions and
orientations at the airport).

It is worth illustrating how the targets appear when the two con-
sidered geometric parameters are varied. Given a target orientation of
116◦, Fig. 3 compares the radar signature of four airplane instances of
class (D) selected from the full available set previously shown in Fig. 2.
In particular, we can observe the aircraft class (D) at different incidence
angle values, (a) 47◦, (b) 41◦, (c) 31◦, and (d) 28◦, and deduce that the
radar shadow becomes more prominent at lower (steeper) incidence
angles. On the other hand, Fig. 4 compares the radar brightness of
aircraft class (D) seen at different target orientation values by keeping
the incidence angle constant at 28◦. In Fig. 4(a)–(c) and (b)–(d) the
aircrafts are in the same parking slot. They do not change orientation to
north, but are imaged respectively from ascending and descending or-
bits. This emphasizes that signatures can vary drastically with imaging
conditions, even if the target itself remains stationary.

Finally, the used dataset consists of 1614 aircraft samples across 60
images, containing four different aircraft classes and the previously de-
scribed set of semi-automated negative samples at five different airports.
Each sample has a patch size of 256 × 256 pixels and each aircraft is
centered in the patch by roughly estimating its center of gravity.

Rather than applying the full data set directly, several test scenarios
of increasing difficulty are defined in Table 2 combining cases of
315 
Fig. 3. Radar brightness 𝛽0 of airplane class (D), oriented 116◦ w.r.t. the North
direction, using different incidence angles: (a) 47◦, (b) 41◦, (c) 31◦, (d) 28◦.

Table 2
List of the 4 test scenarios considered in Section 4.

Airplanes Airports Targets Images

Scenario 1 Single (D) Single (ii) 408 31
Scenario 2 Multiple Single (ii) 767 31
Scenario 3 Single (D) Multiple 922 60
Scenario 4 Multiple Multiple 1614 60

having single/multiple classes of interest at single/multiple airports. In
particular, we are interested in how performance changes when the task
of classifying a single aircraft at a single airport is extended to classify
multiple aircraft classes at airports that are not part of the training set.
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Fig. 4. Radar brightness 𝛽0 of airplane class (D), observed with an incidence angle of
28◦, using target orientation angles: (a) 312◦, (b) 194◦, (c) 67◦, (d) 15◦.

Table 3
List of the 4 features considered in Section 4. All features are stored as 8-bit unsigned
integer arrays.

Feature Description

𝛽0 Radar brightness

𝛾𝑐 𝑠 Sublooking process in range direction followed by a false
alarm thresholding to highlight the strongest scatterers in the
coherence (Sanjuan-Ferrer et al., 2015)

�̂�𝑚𝑙 Despeckling and sidelobe reduction followed by a 2-D
multilooking (Anglberger et al., 2017)

�̂� Despeckling and sidelobe reduction without loss of resolution
(Anglberger et al., 2017)

Please note, that in both Scenario 1 and Scenario 3 the aircraft classes
(A), (B), and (C) are added to the set of negative samples.

2.3. Feature extraction

One of the most important and delicate tasks in SAR aircraft clas-
sification is the ability to inject SAR system information into the
classification process. In the case of machine learning algorithms, this
can be done at different levels of the learning process. Here, we inject
this information in the form of input data by computing additional
features from SAR images. Specifically, in our work we focused on four
different features extracted from Single Look Complex (SLC) images, as
described in Table 3. We point out that this is a peculiarity of the used
dataset, which originates from SLC images, while most of the available
datasets only provide the corresponding SAR detected amplitude. Fig. 5
shows several example patches for the features described in Table 3 and
for each aircraft class.

While Fig. 5(c) and (d) are low-pass filtered versions of the radar
brightness shown in Fig. 5(a), the coherent scatterer image 𝛾𝐶 𝑆 shown
in Fig. 5(b) is a binary mask indicating the brighter scatterers in the
scene with respect to an adaptive threshold. Amplitude normalization
is another important preprocessing step that ensures that the data
has a consistent scale. This is especially important when comparing
data from different sources, as the amplitude of the signals can vary
316 
Table 4
Hyperparameters common to the selected architectures.

Patch size 256
Batch size 32
Epochs 50

Learning rate

Type Step-based
Initial value 0.0001
Drop decay 0.1
Drop rate 15

Optimizer RMSProp

significantly. Normalization is typically performed by transforming the
data to zero mean and unit variance. This helps to reduce the impact
of amplitude differences, making it easier to compare data and apply
machine learning algorithms. In this work, we converted the amplitude
features, 𝛽0, �̂�𝑚𝑙 and �̂�, in decibels and scaled the results to 8 bits,
by stretching the data between −30 dB and 20 dB. In the case of the
coherent scatterer, 𝛾𝐶 𝑆 , the resulting binary image was scaled to 8 bits
by assigning clutter to 0 and coherent scatterer to 255.

3. Method

This section outlines the details of the employed Deep Learning
approach, i.e. the network architecture as well as training and eval-
uation procedures. For training we use the dataset of TerraSAR-X and
TanDEM-X images acquired in ST mode as discussed in Section 2. As
a baseline, we use a fairly standard model for classification, plus a
selection of DL models from standard image classification algorithms,
in order to draw general conclusions that are not dependent on specific
model architectures or training procedures. We focus on the question
of which factors have the strongest impact on performance, i.e., how
classification accuracy changes within the different scenarios with vary-
ing degrees of diversity: the distribution of classes, orientations, and
locations. Since these variables have a direct influence on the observed
SAR signature of an object, it is crucial to evaluate how data-driven
models are able to generalize to different configurations.

3.1. Used network architectures

The proposed baseline network (BN) is shown in Fig. 6. It consists of
a four-layer encoder, which is used to create an internal representation
from an input patch. The latent space is then flattened and transformed
via a fully connected layer and a softmax activation function into a
probability vector for the 𝐾 different classes. The different feature maps
of the encoder are connected via Residual Blocks (RBs), shown in Fig. 7,
which helps to mitigate overfitting and allows for easier optimization.
When using multiple input features, we use different branches for each
feature, which are then concatenated just before the flattening layer.

The model is optimized via the categorical cross-entropy loss and
a step-based learning rate, which drops the learning rate every few
epochs using the following formula:

𝜂𝑛 = 𝜂0𝑑
⌊

1+𝑛
𝑟 ⌋ (1)

where 𝜂0 is the initial learning rate equal to 0.0001, 𝑑 is the drop decay
set to 0.1, 𝑛 is the iteration step, 𝑟 is the drop rate set to 15 epochs, and
⌊.⌋ refers to the floor function.

In addition, we consider a selection of standard DL models for
classification, namely the VGG16 (Simonyan and Zisserman, 2015), In-
ceptionV3 (Szegedy et al., 2015), ResNet50 (He et al., 2016), Inception-
ResNet (Szegedy et al., 2016), and Xception (Chollet, 2017). Table 4
shows the list of hyperparameters common to the six selected archi-
tectures and Table 5 summarizes the approximate number of trainable
parameters for each network adapted to the specific input shape.

All these models combine convolutional and fully connected layers.
In particular, the Visual Geometry Group (VGG) network is charac-
terized by a sequence of 3 × 3 convolutional layers stacked on top
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Fig. 5. Overview of the considered features for each aircraft class (A)-(D). From left to right: (a) radar brightness 𝛽0, (b) coherent scatter 𝛾𝑐 𝑠, speckle-reduced amplitude (c) with
and (d) without multilooking, indicated in Table 3 as �̂�𝑚𝑙 and �̂�, respectively.
Fig. 6. Baseline network (BN) architecture. The output dimensions at every single layer are shown in brackets, where 𝑃 is the minimum number of output filters, and 𝑀 identifies
a 2-D (𝑀 ×𝑀) array. The residual block (RB) is described more in detail in Fig. 7.
of each other in increasing depth; each block is separated by a max
pooling layer that gradually reduces the volume size. VGG16 refers to
the number of weight layers considered in the network. As shown in
Table 5, VGG16 presents the largest number of trainable parameters.
InceptionV3 is a modified version of the VGG16 and introduces a
block called multi-level feature extractor that simultaneously computes
1×1, 3×3, and 5 × 5 convolutions and stacks their results along the
channel dimension before propagating into the next layer of the net-
work. Xception is an extension of the InceptionV3 architecture and
consists of depthwise separable convolutions that replace the standard
317 
Inception blocks. VGG16, InceptionV3, and Xception have in common
a sequential approach as well as the BN architecture. ResNet50 ar-
chitecture makes use of shortcut connections to solve the vanishing
gradient problem. As a result, the architecture is much deeper than
VGG16, but the model size is smaller due to the usage of global
average pooling rather than fully connected layers. Inception-ResNet
is a hybrid architecture that incorporates residual connections into the
Inception backbone. By using such a variety of networks, as well as the
BN architecture, we aim to ensure that the generalization problem is
addressed independently of the used architecture.
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Fig. 7. Structure of the residual blocks used in the BN architecture.
Table 5
Trainable parameters of each used architecture. In the context of our analysis, the
network parameters are designed by setting a patch size equal to 256 × 256, and a
single input feature.

Architecture Trainable parameters

BN 11.8 M
VGG16 165.7 M
InceptionV3 21.8 M
ResNet50 23.5 M
Inception-ResNet 54.3 M
Xception 20.8 M

3.2. Data splits

Ideally, the model would be trained on and applied to images
acquired over different airports, using different incidence angles, orbits,
and seasons containing a multitude of instances for the different aircraft
classes. Such a diverse dataset, however, is very difficult and costly
to produce. As a consequence, detection and classification models are
often trained and evaluated on datasets that only contain a subset of
such configurations, e.g. only a single airport, a limited set of incidence
angles, etc. To evaluate how much the performance of the proposed
methodology degrades when certain conditions in the training and test
data differ, we distinguish whether instances of a Single or Multiple
classes of aircrafts shall be classified as well as whether images of
a single or multiple airports are used. This results in four different
scenarios as shown in Table 2. We also consider four different variations
to divide the data into subsets for training and evaluation if images of
multiple airports are used. The general split applied to all scenarios is
the Varied Split which randomly divides patches into training, valida-
tion, and test sets using 70%, 10%, and 20% of the available images,
including all possible conditions. This creates validation and test sets
that are most similar to the training data and thus represents the
simplest case. Table 6 shows the number of images and target samples
used for training, validation, and testing when applying the Varied Split
strategy in the different scenarios.

Additionally, we apply an Airport Split to all scenarios with multiple
airports, i.e. Scenario 3 and Scenario 4. All the images of the airports (i),
(iii), (iv), and (v) in Fig. 1 are used for training and validation, while the
remaining images of airport (ii) are dedicated for testing the network.
Table 7 reports the number of images and target samples.

We also analyze the effect of different incidence angles in isolation,
without the influence of seasonal changes or different locations, by
applying the Incidence Split to all scenarios with a single airport,
i.e. Scenario 1 and Scenario 2. This split is applied only to the test cases
of images without snow (the most significant seasonal change occurring
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Table 6
Varied split: Number of images, resulting target and negative samples used for training,
validation, and testing in the different scenarios.

Images

Scenario Train Validation Test

Single (ii) 21 3 7
Multiple 40 7 13

Airplane samples (A), (B), (C), (D), (N)

Scenario Train Validation Test

Scenario 1 –,–,–,275,3769 –,–,–,40,539 –,–,–,93,1077
Scenario 2 13,204,25,275,3476 1,30,3,40,496 9,67,7,93,994
Scenario 3 –,–,–,617,6860 –,–,–,114,980 –,–,–,191,1960
Scenario 4 128,204,115,617,6300 31,30,24,114,900 55,67,38,191,1800

Table 7
Airport split: Number of images and resulting target samples used for training,
validation, and testing in the scenarios with multiple airports.

Images

Scenario Train Validation Test

Multiple 49 5 6

Airplane samples (A), (B), (C), (D), (N)

Scenario Train Validation Test

Scenario 3 –,–,–,743,2229 –,–,–,84,319 –,–,–,95,637
Scenario 4 185,282,123,743,2079 28,19,12,84,297 1,0,42,95,594

Table 8
Incidence split: Number of images and resulting target samples used for training,
validation, and testing in the scenarios with a single airport.

Images

Scenario Train Validation Test

Single (ii) 25 3 3

Airplane samples (A), (B), (C), (D), (N)

Scenario Train Validation Test

Scenario 1 –,–,–,334,3850 –,–,–,37,459 –,–,–,37,442
Scenario 2 21,241,29,334,3559 1,30,4,37,424 1,30,3,37,408

over airports). All the images with an incidence angle between 40◦ and
45◦ are used for testing, while the other acquisitions are employed for
training and validation. Table 8 shows the number of images and target
samples used for training, validation and testing.

Finally, we apply a Season Split to all scenarios with a single airport
to analyze the classification performance for different weather condi-
tions. Specifically, this split uses all winter images (most with snow) for
testing, and the rest for training and validation. The effect of seasonal
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Fig. 8. Distribution of the labels for the aircraft class (D) when the seasonality and the angle of target orientation are varied, airport (ii) and common values of the incidence
angle between 30◦ and 35◦ are considered.
Table 9
Season split: Number of images and resulting target samples used for training,
validation, and testing in the scenarios with a single airport.

Images

Scenario Train Validation Test

Single (ii) 16 2 2

Airplane samples (A), (B), (C), (D), (N)

Scenario Train Validation Test

Scenario 1 –,–,–,222,2504 –,–,–,25,269 –,–,–,26,238
Scenario 2 15,154,20,222,2315 1,18,2,25,248 1,19,2,26,216

changes is evaluated in isolation, without the influence of different
airports, and only using images with incidence angles between 30◦ and
35◦. Table 9 illustrates the number of images and target samples. Fig. 8
collects the number of instances for the airplane class (D) as a function
of the target orientation angle and the four seasons in a 2-D histogram.

Overall, we perform an analysis of different test cases, considering
scenarios with single/multiple airports, single/multiple aircraft classes,
single/multiple input features, and different splitting strategies on the
dataset. The results are reported in Section 4.

3.3. Performance metrics

Performance metrics play a crucial role in the assessment of a pre-
trained classifier. In this work, we select different evaluation metrics
for measuring the quality of binary and multiclass classifiers. In both
cases, we consider the overall accuracy which is one of the most
common metrics used to evaluate the generalization ability of classifiers
and corresponds to the proportion of correct predictions. In a binary
problem, the formula for quantifying the overall accuracy, 𝑂 𝐴, is:
𝑂 𝐴 = 𝑇 𝑃 + 𝑇 𝑁

𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁 . (2)

where 𝑇 𝑃 are the true positives, 𝐹 𝑃 are the false positives, 𝑇 𝑁 are
the true negatives, and 𝐹 𝑁 are the false negatives. The overall accu-
racy has several weaknesses, e.g. it is biased in favor of the majority
class (Hossin and Sulaiman, 2015). An often used alternative to have
an overview of the classification is the measurement of the average
accuracy, 𝐴𝐴, which corresponds to the average of each accuracy per
class, i.e. it is the sum of accuracy for each class predicted divided by
the number of classes. The average accuracy can be directly used in
both binary and multiclass problems with

𝐴𝐴 = 1
𝐶
∑ 𝑇 𝑃𝑐 , (3)
𝐶 𝑐=1 𝑇 𝑃𝑐 + 𝐹 𝑁𝑐
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where 𝑇 𝑃𝑐 and 𝐹 𝑁𝑐 are the true-positive and false-negative samples of
the 𝑐th out of 𝐶 classes.

In the binary problem, other additional metrics are designed for
performance evaluation. Precision, 𝑃 𝑟, measures the positive samples
correctly predicted from the total samples predicted in a positive class
and is defined as:

𝑃 𝑟 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 . (4)

On the other hand, recall, 𝑅𝑒, measures the fraction of positives that
are correctly classified and can be written as:

𝑅𝑒 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁 . (5)

Finally, F1-score is another used metric that represents the harmonic
mean between recall and precision values. In formulas, it is defined as:

𝐹1 = 2 ⋅ 𝑃 𝑟 ⋅ 𝑅𝑒
𝑃 𝑟 + 𝑅𝑒

. (6)

4. Experiments

This section presents the results obtained by using the six models
described in Section 3.1 for different experiments. A key component
for improving aircraft classification performance is the identification
of relevant features. The BN architecture implemented in Scenario 1
allows us to evaluate feature importance using a single or a group
of features from Table 3. We use the Varied Split strategy to separate
the training, validation, and test datasets. Table 10 reports the overall
accuracy (OA), average accuracy (AA), F1 score, precision (Pr) and
recall (Re) of seven different feature combinations. In general, all
features perform quite well, with OA, AA, and F1 scores greater than
97%, 92%, and 86%, respectively. The fact that OA is mostly larger
than AA is caused by the unbalanced test set and indicates a better
performance for the dominant class, i.e. the negative samples. Of the
features tested, �̂�𝑚𝑙 performs best, followed closely by the similar
feature �̂�, illustrating that speckle is one of the dominant factors that
reduces the overall detection performance, which can be successfully
addressed by despeckling and sidelobe reduction in a preprocessing
step. The weakest results are obtained with 𝛾𝑐 𝑠, i.e., limiting the signal
to scatterers with strong coherence, such as the jet engines and the
vertical and horizontal stabilizers of the tail. Details about the shape
of the aircraft are dropped. This seems to either cause too much loss
of information, or results in input images that are too sparse to be
efficiently processed by convolutional networks. Combining different
features does not have a significant effect on performance, i.e., using a
group of features leads to similar or worse performance than using the
strongest feature in the group alone. As shown in Fig. 5, the correlation
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Table 10
Evaluation of the BN architecture using as test dataset Scenario 1, and a Varied Split
of the dataset. Each row presents the numerical computation using the different
ombinations of features.
Features OA AA F1 Pr Re

(𝛽0) 98.8 97.39 92.71 89.9 95.7
(𝛾𝑐 𝑠) 98.46 93.27 90.0 93.1 87.1
(�̂�𝑚𝑙) 99.32 99.63 95.88 92.08 100
(�̂�) 99.15 98.55 94.79 91.92 97.85

(𝛽0, 𝛾𝑐 𝑠) 97.78 92.41 86.02 86.02 86.02
(𝛽0, �̂�𝑚𝑙) 99.32 99.14 95.83 92.93 98.92
(𝛽0, �̂�) 99.23 99.09 95.34 92.0 98.92

Table 11
Evaluation of the BN network in the four scenarios. �̂�𝑚𝑙 is used as input feature and
each dataset is divided using the Varied Split strategy.

OA AA F1 Pr Re

Scenario 1 99.32 99.63 95.88 92.08 100.0
Scenario 2 98.63 79.56 87.99 98.41 79.56
Scenario 3 99.49 98.03 97.11 97.37 96.86
Scenario 4 98.14 88.19 92.13 96.43 88.19

between the selected features is responsible for the performance degra-
dation when they are combined as input to the BN architecture. As a
esult, the next experiments are performed using the multilooked and
especkled amplitude �̂�𝑚𝑙. Table 11 describes the performance of the

BN architecture for the four different scenarios described in Section 2,
using the Varied Split strategy.

A relatively high OA of more than 98% is achieved in all scenarios.
owever, since the test set is unbalanced, the AA is more relevant,

and here the different scenarios show significant differences. Extending
he classification task to multiple aircraft classes, i.e. Scenario 2 and
cenario 4, leads to a significant decrease in AA by 20% and 10%,
espectively. This is mainly caused by minority classes (which explain
he stable OA performance), i.e. classes (A) and (C) in Table 6, which

lead to a strong confusion with the background class. Nevertheless, the
results clearly show that such classification tasks can be solved with
atisfactory accuracy if the requirements regarding the amount and
uality (i.e. consistency and diversity) of the training data are met.

Table 12 extends the performance evaluation to the six selected
networks. All of them are trained on the Varied Split dataset of the four
different scenarios, using as input feature �̂�𝑚𝑙. InceptionV3 performs
etter overall on this particular dataset. A possible explanation is that it
ses Inception layers with different filter sizes applied simultaneously.
s a result, the large number of hidden layers allows more complex

features to be learned. In the single airport scenarios, i.e. Scenario
1 and Scenario 2, very deep neural networks, such as VGG16 and
nception-ResNet, do not significantly increase the performance in-

dicators compared to light convolutional networks such as the BN
rchitecture.

This behavior is due to the difficulty the networks have in converg-
ing with a limited amount of training data compared to their large
umber of trainable parameters. In Scenario 4 of Table 12, the F1-score
egradation of 2% can be observed when comparing the values from
he VGG16 and the BN architectures. This result is correlated with
he number of weights of the VGG16 that are an order of magnitude
arger than those of the BN architecture (see Table 5). In addition,

Table 12 shows that a well-balanced and populated splitting strategy
uarantees high performance on any architecture. For the sake of
revity, the following experiments are obtained by leveraging the BN
nd InceptionV3 networks using feature �̂�𝑚𝑙 as input for three distinct
xperiments, i.e. applying them to (i) airport, (ii) incidence, and (iii)
eason splitting strategies described in Section 3.2.
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Table 12
Comparison of classification performance using feature 𝛽0 as input and a Varied Split of
each scenario. Each row presents the numerical computation of the different selected

NNs. For each scenario, the greater performance metric is highlighted in bold.
Architecture OA AA F1 Pr Re

Scenario 1

BN 99.32 99.63 95.88 92.08 100.0
VGG16 99.74 99.37 98.4 97.87 98.92
InceptionV3 99.91 99.46 99.46 100.0 98.92
ResNet50 99.83 99.42 98.92 98.92 98.92
Inception-ResNet 99.57 98.79 97.33 96.81 97.85
Xception 99.66 99.32 97.87 96.84 98.92

Scenario 2

BN 98.63 79.56 87.99 98.41 79.56
VGG16 98.21 79.82 87.66 97.21 79.82
InceptionV3 99.23 82.2 88.48 95.81 82.2
ResNet50 98.72 75.46 85.12 97.61 75.46
Inception-ResNet 99.06 81.88 89.25 98.08 81.88
Xception 98.63 74.8 84.88 98.11 74.8

Scenario 3

BN 99.49 98.03 97.11 97.37 96.86
VGG16 99.63 98.61 97.89 98.41 97.38
InceptionV3 99.77 99.16 98.69 98.95 98.43
ResNet50 99.4 97.78 96.57 97.34 95.81
Inception-ResNet 99.67 98.64 98.15 98.94 97.38
Xception 99.21 96.73 95.47 97.28 93.72

Scenario 4

BN 98.14 88.19 92.13 96.43 88.19
VGG16 97.81 84.12 90.0 96.76 84.12
InceptionV3 99.35 95.64 96.75 97.88 95.64
ResNet50 98.14 85.15 90.39 96.32 85.15
Inception-ResNet 98.7 88.29 93.17 98.62 88.29
Xception 97.35 77.53 85.56 95.45 77.53

4.1. Varied versus Airport splits

This section considers the multiple airport scenarios indicated in
Table 2 as Scenario 3 and Scenario 4, respectively. For each scenario,
we train the BN and InceptionV3 networks using the Airport Split where
test samples are from an airport that is not contained in the training
et and compare the results against the Varied Split , i.e. having train
nd test samples from all available airports. Table 13 shows that

all performance metrics drop considerably whenever we differentiate
the airports for training and testing. While classification performance
for a single airplane class in multiple airports (Scenario 3) is close
to perfect when training data of all airports is available, accuracy
ecreases dramatically when the model is tested on an airport outside

of the training set. Precision remains high, but there is a drop in
Recall, when using the BN architecture. This indicates that either the
cquisition factors of images over the test airport are not well covered

by the training set or that both the models and in particular the BN
rchitecture learned shortcuts to identify instances of the target class

that are not valid if data comes from a different airport as those in
the training set. The representativeness of the training data is also a
contributing factor, although it does not rule out other reasons such
as the model focusing on spurious correlations. One example of such a
shortcut is that airplanes might not be moved between two acquisitions
or even if moved, are parked again at the same location. In both cases,
there is a strong correlation between a parking spot and the airplane
class. The location information is encoded in the background of the
image, e.g. nearby stationary objects or ground features. This would
cause an information leak from the training to the test set, even if the
splits are performed on image level. The results for Scenario 4 lead to
similar conclusions. The drop in performance appears to be less severe
given the accuracy statistics in Table 13, mainly because performance
is already worse compared to easier scenarios. It can be observed that
the complexity introduced by the InceptionV3 architecture guarantees
an overall higher classification performance than the BN architecture.

4.2. Varied versus Incidence splits

In this experiment, the BN and InceptionV3 classifiers are per-
formed considering the single airport scenarios, denoted in Table 2 as
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Table 13
Evaluation of the BN and InceptionV3 networks in Scenario 3 and Scenario 4 using the
̂
𝑚𝑙 feature. Each row reports the performance using a different split of the test data

et. In the case of multiple classes, F1-score, precision, and recall are computed as
lass-wise averages.

Architecture Split OA AA F1 Pr Re

Scenario 3
BN Varied 99.49 98.3 97.11 97.37 96.86

Airport 92.62 71.58 82.04 96.09 71.58

InceptionV3 Varied 99.77 99.16 98.69 98.95 98.43
Airport 97.95 92.55 91.53 98.78 85.26

Scenario 4
BN Varied 98.14 88.19 92.13 96.43 88.19

Airport 90.16 71.64 71.92 72.2 71.64

InceptionV3 Varied 99.35 95.64 96.75 97.88 95.64
Airport 94.67 79.33 80.46 77.87 79.33

Table 14
Evaluation of the BN and InceptionV3 networks in Scenario 1 and Scenario 2 using
the �̂�𝑚𝑙 feature. Each row reports the performance using a different split of the test
dataset. In the case of multiple classes, F1-score, precision, and recall are computed as
class-wise averages.

Architecture Split OA AA F1 Pr Re

Scenario 1
BN Varied 99.49 98.3 97.11 97.37 96.86

Incidence 95.13 71.83 56.9 78.57 44.59

InceptionV3 Varied 99.77 99.16 98.69 98.95 98.43
Incidence 97.47 83.06 79.03 98.0 66.22

Scenario 2
BN Varied 98.14 88.19 92.13 96.43 88.19

Incidence 91.72 55.69 63.4 73.58 55.69

InceptionV3 Varied 99.35 95.64 96.75 97.88 95.64
Incidence 98.44 95.05 93.68 92.36 95.05

Scenario 1 and Scenario 2, respectively. For each scenario, we trained
he network using the Incidence Split where test samples are from
ncidence angles comprised between 40◦ and 45◦ not contained in the

training set. Similarly to Section 4.1, we compare the results against
he Varied Split , i.e. having train and test samples from all available
ncidence angles.

As expected, Table 14 shows a drop in performance in both the
scenarios. The acquisition geometry plays a crucial role in the classifica-
tion because the radar brightness of a target depends on the inclination
of the radar antenna beam. Whenever we isolate a portion of the
incidence angle range from the training, we lose the information about
the signature of the target. As a result, performance indicators such as
the F1-score start to decrease mostly due to a decreased Recall.

4.3. Varied versus Season splits

In this section, we train both the BN and InceptionV3 networks
n the same single airport scenarios using the �̂�𝑚𝑙 feature and the
eason Split where test samples are extracted from winter acquisitions
ot considered in the training set. Similarly to Section 4.2, we com-

pare the results against the Varied Split in Table 15. We observe that
erformance parameters such as the F1-score, Precision, and Recall are

decreasing in the Season Split and this is associated with the isolation
of a season from the training.

Additionally, the AA metric is worse than the one obtained in
Table 14 with the Incidence Split . The loss of accuracy can be attributed
to changes in the background. Seasonality means a change in the
nvironment due to external weather conditions. Fig. 9 compares the

apron of the airport (ii) in (a) summer against (b) winter. By visual
nspection, we can observe that many airplanes might be misclassified
s negatives when surrounded by snow and vice versa. The snow
ignature is comparable to the brightness of the tails and fuselages of
he airplanes.
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Table 15
Evaluation of the BN and InceptionV3 networks in Scenario 1 and Scenario 2 using
the �̂�𝑚𝑙 feature. Each row reports the performance using a different split of the test
ataset. In the case of multiple classes, F1-score, precision, and recall are computed as

class-wise averages.
Architecture Split OA AA F1 Pr Re

Scenario 1
BN Varied 99.49 98.3 97.11 97.37 96.86

Season 95.52 75.4 66.67 96.3 50.98

InceptionV3 Varied 99.77 99.16 98.69 98.95 98.43
Season 95.69 70.38 68.35 96.43 52.94

Scenario 2
BN Varied 98.14 88.19 92.13 96.43 88.19

Season 90.0 40.95 53.67 77.87 40.95

InceptionV3 Varied 99.35 95.64 96.75 97.88 95.64
Season 91.9 59.63 74.21 98.24 59.63

5. Conclusion and future work

The current landscape of SAR aircraft classification research re-
veals a notable incongruence between the abundance of deep learning-
based aircraft classification algorithms and the scarcity of compatible
datasets. This has led to advances in target detection and classifica-
tion in specific operational scenarios, while leaving the challenge of
achieving robust generalization across larger and more diverse datasets
unresolved. This, however, is a critical requirement for the practical
deployment of SAR aircraft classification systems.

Our central objective is the evaluation of the classification per-
formance and generalization capabilities of a generic deep learning

odel in the context of SAR aircraft classification. We elucidate the
elationship of model performance and different operational scenarios
hat influence the ability to perform aircraft classification, particu-
arly with respect to high-resolution SAR images. This investigation
s conducted by using manually annotated high-resolution SAR data
rom the TanDEM-X mission, grounding the study in real-world, op-
rationally relevant scenarios. We show how the model’s ability to
eneralize changes when confronted with novel data involving different
eographic locations, geometric complexities, and weather conditions.
o support our findings, we use several DL models for this investigation,
elected from the standard classification algorithms.

The results indicate that achieving generalization in this type of
roblem remains a largely unsolved challenge. A possible approach to

address this problem is simplification by constraining certain param-
eters, such as focusing on the identification of specific aircraft types,
controlling the geometry of SAR acquisitions within a given area, and
specifying airport locations. While it is still possible to train models on
a specific subset of variables, our results strongly suggest that this is
the preferred strategy.

To improve the generalization capabilities of the model, an effective
approach might be to augment the training data with simulated SAR
target signatures. In addition, progress can be made in improving gen-
eralization by exploiting geometry-invariant features, as exemplified by
the application of state-of-the-art representation learning techniques.
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Fig. 9. Two image patches showing the same apron of the airport (ii) for different seasons: (a) summer time, (b) winter time with snowdrift around the parked airplanes.
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