Herteux, Joschka und Räth, Christoph und Martini, Giulia und Baha, Anime und Koupparis, Kyriacos und Lauzana, Ilaria und Piovani, Duccio (2024) Forecasting trends in food security with real time data. Communications Earth & Environment, 5 (511), Seite 611. Springer Nature. doi: 10.1038/s43247-024-01698-9. ISSN 2662-4435.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://www.nature.com/articles/s43247-024-01698-9#Sec2
Kurzfassung
Early warning systems are an essential tool for effective humanitarian action. Advance warnings on impending disasters facilitate timely and targeted response which help save lives and livelihoods. In this work we present a quantitative methodology to forecast levels of food consumption for 60 consecutive days, at the sub-national level, in four countries: Mali, Nigeria, Syria, and Yemen. The methodology is built on publicly available data from the World Food Programme’s global hunger monitoring system which collects, processes, and displays daily updates on key food security metrics, conflict, weather events, and other drivers of food insecurity. In this study we assessed the performance of various models including Autoregressive Integrated Moving Average (ARIMA), Extreme Gradient Boosting (XGBoost), Long Short Term Memory (LSTM) Network, Convolutional Neural Network (CNN), and Reservoir Computing (RC), by comparing their Root Mean Squared Error (RMSE) metrics. Our findings highlight Reservoir Computing as a particularly well-suited model in the field of food security given both its notable resistance to over-fitting on limited data samples and its efficient training capabilities. The methodology we introduce establishes the groundwork for a global, data-driven early warning system designed to anticipate and detect food insecurity.
elib-URL des Eintrags: | https://elib.dlr.de/207783/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Forecasting trends in food security with real time data | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | Oktober 2024 | ||||||||||||||||||||||||||||||||
Erschienen in: | Communications Earth & Environment | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
Band: | 5 | ||||||||||||||||||||||||||||||||
DOI: | 10.1038/s43247-024-01698-9 | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seite 611 | ||||||||||||||||||||||||||||||||
Verlag: | Springer Nature | ||||||||||||||||||||||||||||||||
ISSN: | 2662-4435 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | forecasting, food security, sustainable development goals, complex systems, reservoir computing | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | D KIZ - Künstliche Intelligenz | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - Kurzstudien [KIZ] | ||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Räth, Christoph | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 04 Nov 2024 09:11 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 14 Nov 2024 14:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags