
communications earth & environment Article

https://doi.org/10.1038/s43247-024-01698-9

Forecasting trends in food security with
real time data
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Early warning systems are an essential tool for effective humanitarian action. Advance warnings on
impending disasters facilitate timely and targeted response which help save lives and livelihoods. In
this work we present a quantitative methodology to forecast levels of food consumption for 60
consecutive days, at the sub-national level, in four countries: Mali, Nigeria, Syria, and Yemen. The
methodology is built on publicly available data from the World Food Programme’s global hunger
monitoring systemwhich collects, processes, anddisplaysdaily updates on key food securitymetrics,
conflict, weather events, and other drivers of food insecurity. In this study we assessed the
performance of various models including Autoregressive Integrated Moving Average (ARIMA),
Extreme Gradient Boosting (XGBoost), Long Short Term Memory (LSTM) Network, Convolutional
Neural Network (CNN), and Reservoir Computing (RC), by comparing their Root Mean Squared Error
(RMSE) metrics. Our findings highlight Reservoir Computing as a particularly well-suited model in the
field of food security given both its notable resistance to over-fitting on limited data samples and its
efficient training capabilities. The methodology we introduce establishes the groundwork for a global,
data-driven early warning system designed to anticipate and detect food insecurity.

Conflict1,2, climate extremes, and soaring food, fertilizer and energy prices3

on the heels of an incomplete recovery from theCOVID-19 pandemic4 have
created a food crisis of unprecedented proportions5. The war in Ukraine
further complicated the situation with millions of people a step away from
starvation. In such an uncertain environment it is incumbent upon
humanitarian agencies to deploy effective early warning systems that
monitor food security conditions in the most vulnerable countries6.The
World Food Programme (WFP) operates in emergency contexts and its
operations include direct delivery of food assistance, cash based transfers,
nutrition support, and are characterized by rapid response. This is done by
leveraging an extensive logistic network in partnership with other UN
agencies, NGOs, government counter parts and local communities, and
requires swift assessments of local needs and vulnerabilities. In this context
early warning systems serve as the foundation for preparedness and quick
response to potential food crises, whether man-made or natural disasters.
They help humanitarian organizations better target assistance to where it is
needed the most, hence minimizing duplication and waste. Forecasting
systems are an integral part of early warning systems, allowing them to
anticipatepotential hazards and issue alerts in a timely andeffectivemanner.
A robust approach to creating accurate forecasting tools is to leverage

modern time series predictionmethods that are based onMachine Learning
(ML)7. Thesemethods can be applied to a growing number of available data
streams, and have proven to be successful across a range of diverse fields.
Examples of these fields include monitoring epidemics8–13, predicting
financial markets14–17, tracking energy consumption18 and forecasting
weather patterns and climate change impacts19,20.

The scientific community has been studying and modeling food
security for many decades and recent research has shown that ML can also
be used in this context. By usingML, it is possible to develop complex, data-
drivenmodels withminimal feature engineering, thereby avoiding the need
for an in-depth understanding of the underlying processes, provided that
enough training data is available. ThismakesML an attractive candidate for
the study of food security, where the problem is complex and reliant on local
conditions,making it challenging to generalize any claims thatmay lead to a
knowledge-based model. An ML approach, if well designed, is able to
reconstruct the underlying causal pathways without pre-established mod-
elling choices, offering an alternative to the modelling from first principles.
There exists a comprehensive body of literature on methods that leverage
ML techniques, either standalone or in combinationwith other approaches.
For instance, the Food and Agriculture Organization of the United Nations
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(FAO) has investigated long-term forecasts at the country level for several
years21,22. In23,24 ML algorithms were used to classify households based on
their caloric intake in Uganda, from data collected by the Bureau of Sta-
tistics. Studies carried out by the World Bank focus on the modeling and
forecasting of Integrated Food Security Phase Classification (IPC) phases
based on data from the Famine Early Warning Systems Network (FEW-
S.NET) across fifteen countries25–27. The studies include attempts to identify
the onset of food crises by building a binary crises indicator from the IPC
phases and reconstruct the national share of population living in districts
labeled as IPC3+25.Moreover in ref. 26 forecasts sub-national IPC phases 1,
2, and 3+ employing a panel vector-auto regression model and using the
Least Absolute Shrinkage and Selection Operator (LASSO) technique to
pinpoint the most critical drivers of food security. Notably in ref. 28, based
on the same FEWS.NET data, the authors extract significant text-based
features from news articles accessed via Factiva. In their work they
demonstrate that the text features greatly enhance the predictive capabilities
of aRandomForestmodel, thus exploiting thepotential of an abundant data
stream that has not been thoroughly explored in the context of food
insecurity.

Using data from the Living StandardsMeasurements Study (LSMS) in
ref. 29, a LASSO regression was used to forecast food security indicators
such as the Food Consumption Score (FCS), the Household Dietary
Diversity Score (HDDS) and the reduced Coping Strategy Index (rCSI), in
Malawi. In30 anXGBoost algorithm is trained on secondary data in Ethiopia
spanning a wide range of available data sets to forecast the future behaviour
of the FEWS.NET IPC phases, classified as deteriorations, improvements
and no change. A recent study from the French National Centre for Sci-
entific Research (CNRS) has investigated use of Deep Learning approaches
to forecast FCS and HDDS indicators as collected annually from the gov-
ernment in Burkina Faso. While researchers from UCLA recently used
remotely sensed soil moisture data and food prices to predict changes in
food security, using data provided by IPC in 7 countries28. Leveraging real-
time data collected by the World Food Programme, in ref. 31 authors
developed a cross-country prediction model to Nowcast FCS and rCSI
indicators across sub-national units in multiple countries, while in ref. 32
authors trained 30 distinct XGBoost models to construct a 30 day fore-
casting model for FCS. In this manuscript we used the same target and
secondary variables used in refs. 31,32.

TheWorld FoodProgramme regularly collects data on food security in
countrieswhere it operates. Themethodologywe present in thismanuscript
builds upon data sourced from the Real-Time Monitoring (RTM) system,
developed by the organization over the last decade and publicly available via
HungerMapLIVE 33. Collected through Computer Assisted Telephone
Interviews (CATI)34, the data provides daily updates on food security
indicators at the household level in near 20 countries. One such indicator is
the FpoodConsumption Score (FCS), a compositemeasure that assesses the
frequencyof consumptionof different food groups in the sevendays prior to
the survey, categorizing households as having poor, borderline, or accep-
table food consumption. Households with insufficient food consumption
refers to those with poor or borderline food consumption. The aggregation
of this variable to the first administrative level in in countries is the target
variable for our study. In contrast to other food security monitoring
initiatives like IPC, CH, or FEWSNet,WFP’s RTMprogram stands out due
to several distinctions. Other programs release country updates at intervals
of four or more months while the RTM program provides daily updates
throughout the entire year. This unique feature enables real-time mon-
itoring of the dynamic changes in food security levels, setting it apart as a
more responsive and timely tool for assessing and addressing evolving
challenges. Furthermore, the underlying process to generate the indicators
in the RTM is purely quantitative, and does not rely on domain expert
consensus or qualitative observations.

The primary aim of this research is to develop a forecasting metho-
dology that can predict insufficient food consumption, as described in the
WFP’s RTM system, over a continuous 60 day period. While national
development plans can depend on low-frequency data released on fixed

dates, the strategic allocation and distribution of resources in emergency
scenarios require more frequent updates, such as monthly or weekly, and
constant prioritization for optimal impact. Our early warning system is
specifically designed for the dynamic and rapidly changing conditions of
humanitarian aid operations in crisis settings. The forecasts are updated
daily, enhancing their versatility and flexibility, making them continuously
useful throughout the year, unlike othermethodologies that are restrictedby
fixed report release schedules. This feature supports frequent re-targeting
and optimization, which are crucial for effective humanitarian responses.
Given the logistical challenges in hardship conditions where resource dis-
tribution can take up to 2 weeks, our 60 day forecasts are valuable for
assessing the risk of deterioration and enabling planning based on updated
priorities. Therefore, a 60 day forecasting horizon, with frequent updates, is
considered operationally valuable for managing resource distribution pro-
grams effectively.

We tested out the methodology in four countries, Mali, Nigeria (north
east), Syria, and Yemen, at the first sub-national level, using secondary data
that represent the key-drivers of food insecurity: conflict, extreme weather
events and economic shocks6. The selection of dataset categories for sec-
ondary variables in our study draws inspiration from the choices made in
previous research25–32, with some adjustments based on availability and
access convenience. A detailed description is found Table 1. Our forecasting
methodology innovates by leveraging RTM data as the primary target,
capitalizing on the unique aspects of the monitoring and incorporating
several desirable features that are particularly beneficial for informing
humanitarian assistance. In order to increase the transparency and
explainability of the model, an aspect that has been identified as crucial in
the literature35–37, we further implement a simple method for dynamic
feature selection. This allows us to assess the importance of different vari-
ables in the model and their impact on the prediction.

The model we identify as the most suitable for forecasting trends in
food insecurity is based on Reservoir Computing (RC)38–40, a type of
recurrent neural network (RNN). Several features make this approach
particularly appealing in this context. First, when training the RC, only the
parameters of the final layer are “learned,” while all other layers are kept
constant. This simplification effectively makes RC equivalent to a linear
regression, eliminating the need for gradient descent and reducing the
number of parameters to learn drastically, speeding up the process and
making it suitable for data-constrained contexts. Despite this simplification,
the untrained layers and activation functionsmaintain themodel’s ability to
capture non linear and complex patterns in the data. Additionally, RC
allows for the dynamic treatment of secondary variables which are itera-
tively estimated along with the target variable. The model learns to project
these secondary variables into the future, facilitating a straightforward
treatment ofmultidimensional time series. Furthermore, the architecture of
RC enables the easy addition of exogenous variables whose future values are
known and do not need to be estimated. This feature enhances the model’s
flexibility and accuracy by incorporating external information directly into
the forecasting process. Despite its simplicity RC has proven to be a valid
alternative to advancedmachine learning prediction techniques particularly
in data-scarce contexts as can be found in refs. 41–43 when applied to
synthetic data. Specifically our methodology relies on an ensemble of RC
models, exploiting the low resource requirements of training RC and sta-
bilizing predictions. This was also recently attempted in ref. 44 where RC is
shown to outperform LSTMs on forecasting food prices.

To assess the goodness of our approach, we conducted a compre-
hensive evaluation by comparing the Root Mean Squared Error (RMSE) of
various methodologies, that span deep learning, machine learning and
classical statistical model: ARIMA, CNN, LSTM and the XGBoost from a
previous attempt32. Inspired by the approach in ref. 30, we also developed a
simple classifier to label future behavior as Deteriorating, No Change, or
Improving based on the forecasted values. Our results demonstrate that the
RCmodel outperformsother tested approaches in both types of tasks, and in
particular in anticipating dramatic deterioration. This is notable given that
curves that show deterioration and severe deterioration are less common in
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the dataset than the stable curves. For these reasons we believe that the
findings presented in this manuscript highlight Reservoir Computing (RC)
as a robust option for forecasting applications in the field of food security,
where high frequency data is scarce and skewed towards stable behaviour,
and for producing early warning signals of impending food crises.

Results
The target variable of our modelling is the time series of the prevalence of
households with insufficient food consumption at the first sub-national
level.Anexample is shown in the left panel of Fig. 1, togetherwith time series
examplesof a sub sample of the secondarydata.Our choice is inspiredby the
approach used in previous works31,32 and makes use of available datasets
describing conflict, economic shocks, and weather events. More specifically
these consist of rainfall and vegetation levels, spikes in market food prices,
food and headline inflation, currency exchange rates and number of fatal-
ities due todifferent kindsof conflict.Adetaileddescriptionof the input data
is provided in the Methods section. Since Islam is the main religion in all
four analysis countries, the holy month of Ramadan (fasting) is expected to
significantly influence insufficient food consumption (see the Methods
section). Therefore, the dates for Ramadan are used as an external input in
the RC model, since it is available not only for the past, but also for the
prediction period.

To standardize all input variables to the same format of sub-national
daily time series we performed some basic pre-processing steps. These
include linear interpolationof variableswhich are only available onmonthly
basis, aggregating information to the desired sub-national level, averaging
intermittent variables over a rolling window as well as de-noising and
smoothing all data. Given the stochastic nature of the RC algorithm, to
generate our output we repeat the prediction procedure 100 times with
different seeds, with the median of all results then considered the final
prediction.

A comparisonbetween the predicted curvesobtainedwith the different
tested methodologies and the actual data is shown in the plots in Fig. 2a
where the blue curves are the actual data representing the sub-national
curves of insufficient food consumption, the colored curves representing the

forecasts. In Fig. 2b, we can see how the variation of the curves is distributed
in the dataset, where Δ = fcs60− fcs0, expressed in percentage points,
represents the difference between the last and first values in the forecasting
window.ApositiveΔ implies that the last value of thewindow is higher than
the first, therefore indicating an increase of food insecurity. On the other
hand a negative value indicates an improvement. We refer to curves with
positiveΔ asdeteriorating curves,while thosewith anegativeΔ as improving
curves. We can see from the figure that the dataset is skewed towards small
values of Δ, indicating a majority of stable curves.

The objective of this work is to test the goodness of the predictions
for 60 consecutive days. To ensure a comprehensive comparison among
all considered algorithms and to assess their robustness across all sea-
sonal trends, we have evaluated their performances in 12 60 day splits.
The forecasts for each split starts at the beginning of every month,
covering the period from June 2022 to May 2023. To simulate the use of
such methodology in a production environment we employed a walk-
forward validation scheme, meaning the model was retrained for every
new forecast adding the data of the previous month, therefore expanding
the training moving forward in time. At this stage retroactive delays in
data updates were not factored in and the models were trained on all
available data at present. In a production environment one must take into
consideration the update frequency of the secondary variables as well as
the target, that may not happen regularly. In section 2 of the Supple-
mentary Material we further address this issue. For every split the hyper-
parameters of the different algorithms were updated and selected
through a grid search of the performances on previous splits. Further-
more the algorithms were allowed to choose the subset of input variables
that were found to be more informative, i.e. minimized the errors
similarly to what was measured in ref. 31.

The aggregate errors are shown in Figs. 3 and 4 and are the result of ca.
70,000 CPU hours of calculations accumulated over several 10,000 runs for
each country and model on the German Aerospace Agency’s High Per-
formance Cluster. This extensive computation period was essential to
thoroughly assess the performances achieved with a vast array of hyper-
parameter combinations across all tested splits and countries, ensuring a fair

Table 1 | Input data

Variable Yemen Syria Mali Nigeria frequency spatial resolution

Insufficient food consumption ✓ ✓ ✓ ✓ daily sub-national

Food based coping ✓ ✓ ✓ ✓ daily sub-national

Rainfall ✓ ✓ ✓ ✓ dekad sub-national

Rainfall 1 month anomaly ✓ ✓ ✓ ✓ dekad sub-national

Rainfall 3 months anomaly ✓ ✓ ✓ ✓ dekad sub-national

NDVI ✓ ✓ ✓ ✓ dekad sub-national

NDVI 1 month anomaly ✓ ✓ ✓ ✓ dekad sub-national

ALPS/PEWI ✓ ✓ ✓ ✓ monthly sub-national

Food inflation ✓ ✓ monthly national

Headline inflation ✓ ✓ monthly national

Currency exchange official ✓ ✓ ✓ ✓ daily national

Currency exchange unofficial ✓ daily national

Battle fatalities ✓ ✓ ✓ ✓ daily sub-national

Violence against civilians fatalities ✓ ✓ ✓ ✓ daily sub-national

Remote violence/explosions fatalities ✓ ✓ ✓ ✓ daily sub-national

Seasonal calendars ✓ ✓ ✓ ✓ dekad sub-national

Ramadan ✓ ✓ ✓ ✓ daily national

Day of the year ✓ ✓ ✓ ✓ daily national

Number of input variables 266 160 114 360

Variables used in themodel for each of the four pilot countries. Time resolution of the data is indicated under frequency. The level of spatial aggregation is shownunder spatial resolution. The last row shows
the total number of input variables used in each model, which is summed over all sub-national time series available for the specified features.
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comparison betweenmethodologies. It’s noteworthy that the actual training
times, on a local standard machine, for an individual hyper-parameter
combination typically fall under 1min for all methodologies (See the Sup-
plementary Material section 5 for more details). As illustrated in Fig. 3, our
analysis of the performances includes a comprehensive study frommultiple
angles, emphasizing systematic differences in the outputs.

In Fig. 3a we start by exploring the temporal evolution of the errors,
showing the aggregate error for each forecasting step. We can see how the
RC model’s error rate increases at a slower pace compared to all other

considered algorithms. While the RC model is initially outpaced up to the
15th forecasting step, it distinctly becomes the preferable option beyond this
point. Figure 3b presents the second type of aggregation for the errors: the
degree of change in the data. In the figure we observe that the difference
between the performances of the RC and the other tested model widens as
the target variable undergoes more substantial change, with RC model
outperforming all benchmarks by a clear margin under severely deterior-
ating conditions. We interpret the general increase across all models in
errors for larger data variations as due to the infrequency of such extreme

Fig. 1 | Input data. The figure shows the time series of the data used in constructing
the forecasting methodology. The target variable, highlighted by the blue dashed
curve in a, is the regional prevalence of insufficient food consumption extracted from
the Food Consumption Score (FCS). In addition to the historical values of the target,
the methodology incorporates predictors coming from another food security indi-
cator, b climate, c conflict, and e economic data. External datasets with known future
values, including crop calendars and Ramadan days, are also considered (d). While

the figures are based on data fromMali, the framework remains consistent across all
countries. A detailed breakdown of the data for each country can be found in Table 1,
with comprehensive information on data sources available in the methods section.
f The map displays the first administrative level boundaries in the four tested
countries, where grey dashed polygons indicate regions that were excluded due to
data unavailability.
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changes, as highlighted in Fig. 2b. Enhancing our approach to better capture
these less common types of curves will be the aim of our future work.
Figure 3c, shows the results of aggregating the methodologies on different
countries, to assess the algorithms’ robustness to different sets of available
input data sets as well as diverse underlying relationships with the target
variable. A complete reference of the available input data sets per country is
found inTable 1. Figure 3c reveals that both the RC and theARIMAmodels
emerge as performing better than other methodologies overall, but no clear
preferred choice emerges from this aggregation. We believe that this is due
to the fact that regional time series of insufficient food consumption do not
show any evident national property or characteristics and can assume very
different behaviour, even within successive splits. The good performance
shownby the simpleARIMAmodel, frequently among the top choices in all
aggregation, aligns with findings from several other studies44–48, where the
ARIMA model often surpasses or matches the effectiveness of more
sophisticated algorithms. As a further evaluation of our proposed approach
we compared the performance on 30 day forecasts with those shown in ref.
32 on the same dataset. The comparison is found in section 6 of

the SupplementaryMaterialwherewe can seehowRConce again stands out
the best choice.

Inspired by ref. 30, we classified curves into three categories based on
their variation: “No Change” for curves with a variation ∣Δ∣ < 0.04,
“Improvement” for a Δ < –0.04, and “Deterioration” for Δ > 0.04. Once
again Δ = fcs60− fcs0 is the measure of change seen in the curves. We also
applied the same classification criterion to the forecasted curves, turning the
regression problem into a classification. From Fig. 4 we can see that the RC
model shows superior performance across all metrics with the exception of
the accuracy on stable curves. Other methodologies tend to label the
majority of curves as being stable therefore falling in the accuracy paradox,
where high performances depend on the class unbalance of the dataset
rather than on correct prediction. When looking at the minority class
Deterioration, RC clearly stands out as the best choice in accuracy, recall and
precision. It is worth underlying that all models, including the RC, show a
conservative behaviour and tend to forecast a stable outcome. We can see
this from the very low levels of the recall on theDeterioration class. This is in
linewithwhatwas seen in ref. 25where the False positive rates shown by the

Data

RC

LSTM

CNN

ARIMA

(a) (b) Curve Varia�on Distribu�on 

Fig. 2 | Forecasts and data. a 60 day forecasts examples generated using the RC,
CNN, LSTM, and ARIMA models for four specific sub-national regions: Yemen,
Syria, Mali, and Nigeria. In the visual representation, the blue curve represents the
actual data, while each of the other curves depicts the prediction of one of themodels.

b The observed distribution of the variation of the prevalence of insufficient food
consumption on the 60 day windows used to train and test the algorithms. We can
appreciate how the dataset is biased towards curves of small variation.

Fig. 3 | Forecasting aggregated performances. Performances of the LSTM, CNN
and ARIMAmodels measured in median RMSE, aggregated in three different ways:
Foretasting time step (a), variation of the target variable (b), per country (c). Figure
(a) shows how the RC model outperforms the other methodologies after the 15th
forested step with an aggregated RMSE at the end of the 60 day window of 4.9
percentage points. In figure (b) we see RC tends is consistently the best performer
when aggregating on curves according to the variation of their target variable

Δ = fcs60− fcs0. This is more evident for high values of Δ, that indicate a sharp
increase of levels of insufficient food consumption. The barplot in figure (c)
aggregates the error per country. Despite the fact the RC is among the top performers
for every country there is not a clear preferred methodology. This is due to the fact
that regional time series belonging to the same country can have very different
behaviours and have no clear national characteristic.
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methodology are oneorder ofmagnitude lower than theFalse negative rates,
and is a limitation of the current methodology that will be addressed in
future work.

Finally we have studied what subset of secondary variables produced
the lowest error for each split that was tested. In Fig. 5 the subsets of input
variables are reported along with the frequency of their selection for every
methodology. It is clear that most of the predictive power for all tested
methodologies comes from the auto-regressive element, the rCSI indicator
and the seasonal external variables. Understanding how to optimise the
triangulationof the data sourceswill be the object of futurework.We further
analyse this important point in the Training Procedure sub-section of the
Methods section.

Discussion
This manuscript applies several purely quantitative time series prediction
methodologies to the problem of forecasting insufficient food consumption
of a horizone of 60 days, based on the data collected by the World Food
Programme’s real-time monitoring system. In direct comparison with
LSTM, CNN and ARIMA we find Reservoir Computing to be the most
suitable for this task in terms of performance, resource requirements,
robustness and ease of use. We further proved this approach to surpass a
previous attempt using XGBoost32 (See supplementary material section 6).

The Reservoir Computing algorithm has demonstrated to be a solid
framework for the construction of a purely quantitative early warning
system, owing to several advantageous features. Its ability to process mul-
tidimensional time series and learn complex nonlinear relations in target
and features gives it the advantage over simple statistical models like
ARIMA. The iterative prediction scheme allows the use of exogenous
variables like seasonal and religious calendars where future values are
already known as well as make implicit forecasts for those where this is not
the case. The relative simplicity of the approach mitigates the danger of
overfitting when compared to the more sophisticated Deep Learning
methodologies CNNand LSTM, in linewithwhatwas shown in ref. 44. The
limited resources needed for the training process allow an ensemble
approach, the size of which can be fined tuned and adjusted based on the

available computational resources and accuracy requirements of the field
and context of application. Furthermore, we saw how the RCmethodology
was able to accommodate a degree of class imbalance in the training data.
Indeed the above benchmarkperformance shownby theRCmodeldoes not
depend on the majority of stable curves that form the training set, but is
actually more evident in the subset of curves that represent dramatic
increases in the levels of insufficient food consumption. These findings
suggest the potential advantages of RC over models of this kind in data-
scarce contexts, even when confronted with high-dimensional, noisy, and
authentic datasets. The ensemble architecture appears to perform well
without requiring specific modifications for large input dimensions, as seen
in approaches like Local States49. Although the comparisons with meth-
odologies based on different target variables is not straightforward, its worth
noting that the performances measured with RMSE are in line or better of
what presented in other works. In ref. 26 with IPC3+ target the RMSE is of
13%, while in ref. 50, the best model performs between 5% and 13%RMSE,
although on different time horizons. In ref. 25 the performances vary
considerably for different countries up too a maximum of 14.7% RMSE for
near term forecasts and to 17.5% on medium term. Other works used
different metrics to measure the errors, such as R2, making it more difficult,
to compare with what obtained in this work.

The results shown in this manuscript indicate that a forecasting
methodology based on the RC algorithm is able to predict 60 days into the
future the levels of insufficient foodconsumptionwith anaverageRMSEof5
percentage points. This increases to around 10 percentage pointswhen only
focusing on the subset of curves that show a severe deterioration. From the
classification exercise we see that the RC correctly forecasts the type of
behaviour once every two forecasts (Total accuracy 0.48), and the number
goes down to once every three forecasts when only considering classifying
future behaviour as deteriorating of not (accuracy0.33), or improving or not
(accuracy 0.36), according to our definitions. We believe that this is solid
starting point for the development of an early warning system based on the
RC forecasting algorithm. More work will be done both to improve the
general performances and to tailor the methodology to on deteriorating
curves. To achieve this goal we will concentrate our future work on four

Improvement
Δ < - 4%

Deteriora�on
Δ >   4%

No Change
-4% < Δ < 4%

Curve Category Defini�on Curve Classifica�on Performances(a) (b)

(c)

Fig. 4 | Classification performance. This figures compares the performances of the
ARIMA, CNN, LSTM and RCmodels on their ability to distinguish different classes
of behaviour: No Change, Improvement and Deterioration as defined in (a). The
same criterion in applied to actual curves and predicted curves to label the behaviour.

b Performances metrics on the classification task. Accuracy on singles classes are
computed treating the problem as a binary classification. cConfusionMatrices of all
tested methodologies.

https://doi.org/10.1038/s43247-024-01698-9 Article

Communications Earth & Environment |           (2024) 5:611 6

www.nature.com/commsenv


main pillars: extending the forecasting horizon, tailoring the methodology
todetect severe deterioration’s of food security levels, developingmethods to
explain the role of the input variables and implementing themethodology in
a production environment. Initial results obtained on 90 day forecasts
confirm the RC algorithm as the preferred choice with respect to other
benchmarks, despite a general increase of the errors (see Supplementary
Material section 1). Aggregating the underlying data to weekly or monthly
time granularity, reducing the number of data points that need to be fore-
casted and smoothing uninformative fluctuations, seems like a promising
possibility. This would also eliminate the need for interpolation and other
pre-processing steps on secondary variables, thereby facilitating the
deployment and maintanance of the approach. Introducing a custom
weighting system in the training process and duplicating data splits which
show severe deterioration will be attempted to focus the methodology on
deteriorating curves, that are the most important to anticipate. Also testing
other andmoremodern architectures of Reservoir Computing like theNext
Generation RC51 or the Trend-Seasonality decomposition RC44 variation
might represent a valid choice to improve overall performances and extend
the horizon. In section 2 of the supplementarymaterial we have described a
procedure to compute the confidence intervals of the forecasted curves. The
confidence intervals may be added considering ±2-standard errors con-
fidence bands. This methodology can be applied to all algorithms including
RC. Finally, allowing the algorithms to autonomously select the most
informative subset of features for each forecast, as done in this manuscript,
marks an initial effort to comprehend the underlying drivers influencing the
predictions. A comprehensive analysis of the results and the continued
development of this approach will be crucial for enhancing the explanatory
power of the methodology.

In conclusion, this research lays the groundwork for a dedicated
quantitative tool for modeling and forecasting food insecurity. Our
approach complements existing methodologies with its year-round versa-
tility by offering real time updates on future levels of food insecurity. By
leveraging the advantageous features of real-time monitoring, the metho-
dology proves particularly valuable for foreseeing and quantifying the
impact of events that occur between the releases of other monitoring sys-
tems. Our work presents the potential to furnish humanitarian

organizations with the capability to rapidly institute early warning systems
to preemptively help vulnerable communities. The utilization of extant and
expanding datasets in conjunction with the low requirement of computa-
tional power renders the proposed approach simple and economical to
implement. As such, it could offer much-needed technical support to
humanitarian actors in their efforts to anticipate, quantify and promptly
address impending food crises.

Methods
In this section, we provide an in-depth exploration of the forecasting
methodologies employed in our study, along with a comprehensive
overview of the input datasets utilized to generate the results discussed in
the preceding sections. Particular emphasis is given to the selected
Reservoir Computing framework, because of it being less utilised and its
central role in this work. In addition, a detailed overview of the training
procedures and the hyperparameter selection process for each metho-
dology is shown.

Data
As mentioned in the Introduction and Results sections, the models were
trained on data representing the prevalence of food consumption and
coping strategies as well as the global key-drivers of food insecurity. The
following paragraphs introduce each of the input data sources and the
features extracted from them. In Table 1 we can see the availability of the
data for each country.

Prevalence of people with insufficient food consumption. This
measure is built on the Food Consumption Score (FCS), a commonly
used food security indicator, and is obtained estimating the percentage of
households in a regionwith an FCSbelow a country-dependent threshold
indicating poor or borderline food consumption. This way a single value
between 0 and 100 per region is gained. The Food Consumption Score is
collected by WFP both by face to face surveys, which happen approxi-
mately once a year and through CATI (Computer Assisted Telephone
Interviews) on a daily basis. The score evaluates the amount as well as the
nutritional value of a household’s food consumption. For some regions

Fig. 5 | Feature selection. Feature groupings that
were considered in the grid search for the RC, CNN
and LSTM models to implement a dynamic feature
selection. a Schema of how the features were
classified into 5 different feature groupings.
b–d frequency with which each feature grouping
was selected for in (a) the RC model, (b) the LSTM
model and (c) the CNN model.
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not enough data is available and they were thus excluded from the study.
This is the target variable of our modelling.

Prevalence of people using crisis or above crisis foodbased coping.
Similar to insufficient food consumption, the prevalence of people using
crisis or above crisis food based coping is based on a food security indi-
cator, the reduced Coping Strategy Index (rCSI), which represents a
different dimension of the concept. The rCSI is calculated from the results
of the same surveys as the FCS and therefore the same methodology is
used. Again a prevalence or percentage is defined by counting the number
of people in a region scoring below a certain threshold. The rCSI is in
particular a measure of the coping strategies adopted by the victims of
food insecurity. Examples include limiting the sizes of food portions or
the amount of meals per day, borrowing food or relying on help from
friends or relatives, and choosing less preferred or less expensive food.
Since both indicators stem from the same source, the availability of the
data is the same.

Rainfall and vegetation. Five rainfall and vegetation features were
constructed, sourced from WFP’s Climate Explorer52 and are originally
provided by CHIRPS53 (rainfall) and MODIS54 (vegetation) satellite
imagery. These include the amount of rainfall in mm and the NDVI
(Normalized Difference Vegetation Index) value, which is a measure for
the amount of vegetation in a region. In addition the anomalies of both
indicators are included. The anomaly is calculated by dividing the average
value of a variable during a period (e.g. 1 month) by the historical average
for the same period in all previous years. To inform the model about the
comparison of current and historical seasonal behavior we include the 1-
and 3 month anomaly of rainfalland the 1 month anomaly of NDVI.
From these WFP derives regional seasonal calendars which mark agri-
culturally relevant seasons. They can be considered a binary time series of
either 0 or 1. All of these variables are given in 10 day intervals ("dekads”)
for every region.

Conflict. To represent conflict as a driver of food insecurity we use data
from the Armed Conflict Location & Event Data Project (ACLED)55

which is a publicly available repository providing real-time and historical
data on political violence and protest events in nearly 100 countries56.We
build three features from the fatalities reported for events in an admin-
istrative region of the categories Battle, Violence against Civilians and
Explosions/Remote Violence by summing each of them in a rolling
window over the last 90 days in order to create daily time series for each
subnational region.

PEWI index. Food prices are an important factor for food security as they
affect how much food a household can purchase. The forecasting power
of this kind of data has been shown empirically57. The ALPS indicator
(Alert for Price Spikes)58 measures relative spikes in monthly prices by
comparing them to estimated values and is calculated monthly as follows

ALPS ¼ ðPricet � ^PricetÞ=σϵ ð1Þ

where t gives the month and σϵ describes the historic standard deviation of
the residuals (Pricet � ^Pricet for previous months). WFP monitors com-
modity prices in local markets monthly and makes them publicly available
through its Economic Explorer59. For our model, we only use commodities
in the “cereals and tubers” category. The data is averaged over all com-
modities within this category and across all markets in a given region. This
aggregates the data to single time series per first-level administrative unit.
The ALPS indicator is sometimes also referred to as PEWI (Price Early
Warning Indicator).

Macro-economics. To gain a better understanding of the overall
situation in a country we also look at several economic indicators, which
are available at the country level. We include food and headline inflation

to complement ourmonthly data on food commodity prices.We also use
daily effective exchange rates for local currency. All of these indicators
can be found in WFP’s Economic Explorer59.

Ramadan. Ramadan is the month of fasting in the Islamic faith, which is
the predominant religion in all four countries considered in this study.
The traditional practice of fasting for the whole month can clearly be
expected to have a strong influence on food consumption and in the way
it is self-reported. The exact relationship is likely complex, but the impact
can empirically be seen in the data. In Fig. 6we can see how the target data
averaged over sub-national units is affected. The target time series con-
sistently starts to go down during the time of Ramadan and recovers to
roughly the same level afterwards in a similar time frame. These dips are
among the most noticeable features of the time series. To accommodate
this, we include the occurrence of Ramadan as a binary variable. If a date
lies during Ramadan, this feature has a value of 1, otherwise it is 0. Since
we know even for future dates if they occur in Ramadan, this feature is
processed separately as external data. It is available during prediction and
does not need to be inferred.

Day of the year. To give themodels the ability to learn seasonal effects as
well as possible we include a feature to represent the day of the year as a
number ranging from 1 to 365. Similarly to Ramadan this feature is of
course known for the future and can be used as an external variable.

Algorithms
For this study we have investigated a number of forecasting methodologies
ranging from the simple statistical model ARIMA (Autoregressive Inte-
grated Moving Average) to the Deep Learning techniques CNN (Con-
volutional Neural Network) and LSTM (Long Short-TermMemory) where
Reservoir Computing (RC) can be understood as a hybrid between the two
extremes.

Ensemble reservoir computing model. Reservoir Computing is a
simplified Recurrent Neural Network(RNN) algorithm known to be easy
to train and to be well-suited for problems with limited amounts of data,
where it outperforms other state-of-the-art prediction algorithms41–43. It
is able to process multidimensional inputs as well as past values through
its untrained hidden layer called the reservoir and use them to iteratively
predict multidimensional time series. As an RNN it is well suited for
temporal, sequential data. Because only the last readout layer is explicitly
trained through a simple linear regression, it is still considered less
complex than typical Deep Learningmethodologies like LSTM. To utilize

Fig. 6 | Ramadan effect. Prevalence of people with insufficient food consumption
averaged over all available regions of Yemen in blue. Time periods of Ramadan
shown by areas shaded red.
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the low resource requirements of RC and stabilize any random fluctua-
tions caused by the initialization of the untrained network weights we
implemented a simple ensemble scheme for the model by training 100
separate models with the same hyperparameters similar to what has been
applied in ref. 44. For each single model only the seed for the random
creation of the reservoir network is changed. The final output of the
ensemble model is derived by calculating the median of the compilation
of single outputs.

The variant of RC we implement for each single model is based on the
original version of RC known as Echo State Network (ESN)39. An ESN is a
Recurrent Artificial Neural Network consisting of three layers: an input
layer, a hidden reservoir layer and a read-out.While the input layer is simply
responsible for distributing the incoming information in the network and
the function of the readout is to shape the final output, the reservoir’s
purpose is firstly the projection of the data to a high-dimensional, nonlinear
space and secondly to serve as the memory of the model. The dynamics of
the ESN center around the reservoir state rt 2 RN , which develops
according to the update equation

rtþ1 ¼ tanhðArt þWinxtÞ ð2Þ

where the adjacencymatrixA 2 RN ×N represents thenetwork, xt 2 Rdx is
the input fed into the reservoir andWin 2 Rdx ×N is the input matrix. The
hyperbolic tangent is a standard choice for the activation function. Since the
state of the reservoir is a function of all the past inputs it received, it retains
some information about the past if they are provided in sequential order.
This iswhatmakesESNandRC ingeneralwell suited for time series analysis
and prediction. We create A as a sparse random network since ow con-
nectivity has been found to be advantageous60. The weights of the network
are then drawn uniformly from [−1, 1] and afterwards rescaled to fix the
spectral radius ρ to some fixed value. ρ is a free hyper-parameter. We chose
Win to be also sparse, in the sense that every row has only one nonzero
element. Thismeans every reservoir node is only connected to one degree of
freedomof the input61. Thenonzero elements are drawnuniformly from the
interval [−1, 1] and then rescaled with a factor sinput, which is another free
hyperparameter called input strength.

From this we can then compute the output yt 2 Rdy . For our pre-
dictive model we train the ESN to approximate yt � ~xtþ1. Where ~x is not
just the target data, but also all of the secondarydata that is not known for the
future. This way the model also learns to estimate the secondary variables
and project them into the future. The readout is characterized by

yt ¼ Wout~rt ð3Þ

where ~r ¼ fr1; r2; :::; rN ; r21; r22; :::; r2Ng. This is a commonly used62 non-
linear transformation of rt which additionally serves to break the anti-
symmetry the equations would otherwise have63. The readout matrix
Wout 2 Rd × ~N is the only part of the ESN that is trained. This is done via
simple Ridge Regression64 controlled by the regularization parameter β. The
resulting model is as a first step capable of forecasting the target variable as
well as the required secondary variables one day into the future. To do so the
time series of past input data is fed into the reservoir sequentially. During
this process the reservoir stores information about past andpresent valuesof
these variables. The readout can then be used to map from the reservoir to
the prediction. For the purpose of predicting time series of any length the
model is used as a “closed loop”. The output is fed back into the model
allowing the sequence of input data to continue. Thisway the forecast can be
extended to any length, although the error tends to grow with every itera-
tion, thus effectively limiting the reasonable time window. Secondary
variables have to be projected into the future in the same way for the
procedure to work. Since this creates an additional source of error, we
developed a way to include future values of the data in case they are known.
For some features like Ramadan or growth seasonality, we do not train the
model to forecast the values. Instead, the known future values are used as
input during the respective prediction steps. An avenue for future research

and an improved feature selection could be the inclusion of independent
forecasts for secondary variables like rainfall and conflict, since the RC
model is not optimized to predict their behavior.

ARIMA. The Autoregressive Integrated Moving Average (ARIMA) is a
simple statistical model designed to predict future behavior of a time
series solely based on its past values, without incorporating additional
variables. In this model, each time step is presumed to have a linear
dependence on the preceding p values of the time series, along with q
error terms representing white noise. To address non-stationary time
series, the data undergoes differencing d times. While these assumptions
limit the model’s ability to capture complex nonlinear relationships,
ARIMA is recognized for its robustness, efficiency, and ease of training.
Consequently, it remains widely applied in various domains such as
financial time series47 and epidemiology65.

Convolutional Neural Netorks (CNN). a widely recognized category of
Artificial Neural Network (ANN) particularly renowned for image
recognition tasks. 1-dimensional CNNs have been successfully applied in
time series prediction tasks even though they are not primarily designed
for sequential data. These networks can incorporate multiple hidden
layers and are able to learn temporal dependencies between the target
data, its past values and secondary data, which they achieve via an
advanced backpropagation-based training scheme. Our model is based
on the keras implementation of CNNand consists of a variable number of
1DConvolution layers with ReLu activation functions each followed by a
1DMax Pooling layer. The number of filters, the kernel size and the pool
size are among the free hyper-parameters of the architecture which are
selected through the grid search. The readout is comprised of two Dense
layers, the first employing ReLu activation functions and a variable
number of units followed by a linear layer that maps to the output. In
contrast to the iterative scheme utilized by RC, the model takes a variable
number of past values of the employed features as input, and directly
outputs a vector of predicted values. During training, the model para-
meters are trained by minimizing the Mean Squared Error (MSE) using
the Adam optimizer for 200 epochs with a variable learning rate. Early
Stopping was employed, using 20% of the training data for validation, to
halt the training once the validation error fails to improve for five con-
secutive epochs.

Long Short-TermMemory (LSTM). known as the most widely adopted
variant of Recurrent Neural Network, it is part of the larger category of
ANNs where it stands out by its sophisticated mechanism to deal with
long-range temporal dependencies through selectively retaining past
information with the help of its forget gate66. The parameters of this
model are trained via backpropagation through time (BPTT). While this
is the most sophisticated algorithm we tested in this study, it is also the
hardest to train and to fine-tune and carries the highest risk of overfitting.
Similarly to our approach with CNNs we built our LSTM model using
keras. The architecture consists of two LSTM layers connected by a
Repeat Vector Layer. The activation functions used are of the type ReLU
while the number of units in both layers is a free hyperparameter subject
to tuning in the grid search. The same is true for the dropout rate which
we apply to both layers on the input as well as the recurrent connections.
The readout of the model consists of a Time Distributed Dense layer
mapping to a vector of predicted values. We only apply the model to
differenced data as opposed to making this a part of the hyperparameter
tuning as in the RC and CNN model due to the fact that we saw a
complete inability to learn the original data without differencing with the
LSTM in preliminary trials. The training of the LSTMmodelmirrors that
of the CNN model using an Adam optimizer and Early Stopping.

Training procedure
To ensure a fair comparison of all models and determine their optimal
configurations, we conducted an extensive grid search on a high-

https://doi.org/10.1038/s43247-024-01698-9 Article

Communications Earth & Environment |           (2024) 5:611 9

www.nature.com/commsenv


performance cluster for each model and country. In order to simulate real-
life scenarios, we implemented awalk-forward validation scheme across the
12 splits under consideration covering a full year. As a preprocessing step all
input data was resampled to a daily resolution and to eliminate isolated
missing values linear interpolation was used. A trailing 10 day moving
averagewas applied to smooth the data and reduce the amount of noise. For
every prediction, we record the RMSE and the utilized hyperparameters.
The result is a rich dataset that enables an in-depth analysis of our models’
behavior and the significance of various hyperparameters.

Results directly derived from the grid search are shown in Fig. 7. The
importance of the spectral radius and the input strength in RC is confirmed
in agreement with the literature. For CNN we can see that differencing
improves the performance, while other hyperparameters like e.g. the
number of filters only have a small impact. For LSTM we identify the
learning rate, the number of units, the dropout rate and the length of
lookback ashaving a strong impact.Wecan see that it is generally impossible
to define a single hyperparameter as good or bad since they are usually
interdependent. Nevertheless, the fact that high dropout rates are favored in
some cases in LSTM indicates a tendency towards overfitting. Overall, it is
observed that RC stands out as the model for which it is easiest to identify
generally reasonable hyperparameter configurations that yield satisfactory
performance across all splits. This implies that satisfactory forecasts could
even be made with less frequent retuning of the model’s hyperparameters.

Within this framework we implement a walk-forward optimization
procedure. This technique is commonly used in time series analysis and
forecasting to assess the performance of a predictive model. The idea is to
train and test themodel sequentially over time,moving forward in a step-by-
stepmanner. This process allows themodel to be evaluated onnewdata that

becomes available as time progresses. The process can be separated into the
following steps, which are carried out for each model on each country:
1. Selecting a split: A point in the the time series is chosen as the cutoff

between training and evaluation. The data before this point is con-
sidered to be the training data. The data after this point is considered
test data.

2. Training the model: The model is trained on the training data.
3. Evaluating themodel: A forecast is created with the trainedmodel on

the time period after the cutoff and compared to the test datawhere the
RMSE is calculated between forecast and test data.

4. Walk forward: A new split with a new cutoff point further ahead in
time is selected and the process is repeated.

This strategy can be used to evaluate the model with the best hyper-
parameters in the following way: the process is carried out for each com-
bination of hyperparameters considered. To evaluate the performance and
simulate an real-life application with regular retraining of the model
hyperparameters for each split are chosen based on their aggregate per-
formance across all preceding splits, where the prediction period ended
before thebeginningof the current one.This prevents anymixingof training
and test set. The metric used to evaluate this aggregate performance is the
median RMSE over these splits. The choice of the median RMSE over the
meanRMSEwasmotivated by the fact thatwe foundusage of the latter to be
more likely to lead to mean-reverting, flat predictions. Conversely, using
only a smaller amount of previous splits to select the hyperparameters
proved to be too unstable given the heterogenous and noisy nature of the
data where the best performance in a single split can often be an outlier.
With the optimal knowable configuration for a given split we can properly

ρ

RC
CN

N
LS

TM
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7 | Grid search results. Additional results on the influence of different hyper-
parameters derived from the grid search on Yemen. The value shown is always the
median RMSE over all splits and unspecified hyperparameters. a–c RC results for
spectral radius and input strength, which are often considered the most important

hyperparameters in RC. d–f CNN results on differencing, learning rate and number
offilters. g–i LSTM results on learning rate, number of units, dropout rate and length
of lookback.
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evaluateby looking at theperformanceof the respective versionof themodel
on the respective time period. Using the differences or returns of the pre-
valence of insufficient food consumption as target instead of the raw values
proved to be particularly important for the LSTM and CNNmodels which
were otherwise mostly unable to successfully forecast. For this reason we
added this as an option for RC as well while for ARIMA differencing is a
already a part of the regular setup.

Beyond the configuration of the algorithms themselves we also
investigated a noteworthy modification of the input data. Because the
importance of each feature as well as their information content and noise-
levels can vary drastically from country to country and even between splits,
we implemented a method to select the most useful features for each

prediction in away that could be used in application. In order to achieve this
we introduced a hyperparameter for different groups of features in the grid
search which makes it possible to optimize it together with the model
configuration. The five groups we define are called “FCS”, “FCS+”, “cli-
mate”, “economics” and all ranging from including only the target data in
“FCS” to the full set of features in “all”. Exactly which features are part of the
different groups is visualized inFig. 5a. InFig. 5b–dwepresent the frequency
with which each of the groupings is selected by the three algorithms RC,
LSTMandCNN.The smaller groupsof “FCS” and “FCS+” are selectedwith
the highest frequency indicating that the autoregressive component is the
most generally predictive one. However, the larger groups especially “cli-
mate” and “economics” do make their appearance showing that they are
indeed informative at specific instances. This method was not applied for
ARIMA, which does not use secondary data.

For all models a large preliminary grid search was carried out on the
example of Yemen to identify themost relevant hyperparameters. Based on
the results the ranges and fixed parameters were selected as shown in
Tables 2, 3, 4 and 5. While the hyperparameters and their ranges generally
differ for eachmodel, our selection focused on thosewith the highest impact
onperformanceswhile keeping the overall resource requirements of the grid
search similar for RC, CNN and LSTM.

Data availability
The data used in this study is available in public repository https://github.
com/ducciopiovani/FamPredAI.

Code availability
The code used in this study is available in public repository https://github.
com/ducciopiovani/FamPredAI.
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