elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

ON THE RELEVANCE OF SAR AND OPTICAL MODALITIES IN DEEP LEARNING-BASED DATA FUSION

Gawlikowski, Jakob und Gottschling, Nina Maria (2024) ON THE RELEVANCE OF SAR AND OPTICAL MODALITIES IN DEEP LEARNING-BASED DATA FUSION. ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop, 2024-05-07 - 2024-05-11, Wien, Österreich.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

When preparing SAR-optical fusion datasets, cloudy samples are often removed from the optical component if they do not contain any information for the prediction task. Although optical data contains more information that is easier to extract and SAR data is noisier, the latter is less affected by changes in the location or illumination and is not obscured by cloud coverage. By removing clouds from the dataset, the realistic situation of cloud coverage is withheld from the network during training and SAR data has less influence on the prediction than when training with cloudy data. In this work, we show on publicly available pre-trained networks and two remote sensing datasets that the effort to filter and correct clouds might not be needed. In contrast, the results of self-trained ResNet18 networks indicate that having cloudy examples in the dataset might lead to a more informative feature extraction from the SAR modality. This leads to networks that utilize the SAR modality comparatively more for predictions, which we show by an increased relevance of the SAR modality. Moreover, such networks obtain improved accuracy, not only on cloudy test samples but potentially also on clear test data.

elib-URL des Eintrags:https://elib.dlr.de/207695/
Dokumentart:Konferenzbeitrag (Poster)
Titel:ON THE RELEVANCE OF SAR AND OPTICAL MODALITIES IN DEEP LEARNING-BASED DATA FUSION
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Gawlikowski, JakobJakob.Gawlikowski (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Gottschling, Nina Marianina-maria.gottschling (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Data Fusion, SAR-Optical, Data Source Relevance, Deep Learning
Veranstaltungstitel:ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop
Veranstaltungsort:Wien, Österreich
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:7 Mai 2024
Veranstaltungsende:11 Mai 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Maschinelles Lernen
Standort: Jena
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Institut für Datenwissenschaften > Datenanalyse und -intelligenz
Hinterlegt von: Gawlikowski, Jakob
Hinterlegt am:05 Nov 2024 16:14
Letzte Änderung:05 Nov 2024 16:14

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.