Behrens, Gunnar and Beucler, Tom and Gentine, Pierre and Iglesias-Suarez, Fernando and Pritchard, Michael and Eyring, Veronika (2022) Non-Linear Dimensionality Reduction With a Variational Encoder Decoder (VED) to Understand Convective Processes in Climate Models. American Geophysical Union Fall Meeting 2022, 2022-12-12 - 2022-12-16, Chicago, USA.
![]() |
PDF
3MB |
Official URL: https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1142078
Abstract
Deep learning can accurately represent sub-grid-scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoders (VED), a non-linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed-forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; b) high optically thin cirrus-like clouds are separated from low optically thick cumulus clouds; and c) shallow convective processes are associated with large-scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub-grid-scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties. A manuscript of this work was recently accepted in AGU JAMES on July 11th, 2022 and is accessible at https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003130 . The content of this work was not presented at an AGU conference yet.
Item URL in elib: | https://elib.dlr.de/207305/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||
Additional Information: | Funding for this presentation was provided by the European Research Council (ERC) Synergy Grant “Understanding and modeling the Earth System with Machine Learning (USMILE)” under the Horizon 2020 research and innovation programme (Grant agreement No. 855187). | ||||||||||||||||||||||||||||
Title: | Non-Linear Dimensionality Reduction With a Variational Encoder Decoder (VED) to Understand Convective Processes in Climate Models | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | December 2022 | ||||||||||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Convective Processes, Large-scale Drivers of Convective Processes, Atmospheric Modelling, Deep Learning, Interpretability, Dimensionality Reduction | ||||||||||||||||||||||||||||
Event Title: | American Geophysical Union Fall Meeting 2022 | ||||||||||||||||||||||||||||
Event Location: | Chicago, USA | ||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||
Event Start Date: | 12 December 2022 | ||||||||||||||||||||||||||||
Event End Date: | 16 December 2022 | ||||||||||||||||||||||||||||
Organizer: | American Geophysical Union | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Atmospheric and climate research | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Atmospheric Physics > Earth System Model Evaluation and Analysis | ||||||||||||||||||||||||||||
Deposited By: | Behrens, Gunnar | ||||||||||||||||||||||||||||
Deposited On: | 11 Oct 2024 13:57 | ||||||||||||||||||||||||||||
Last Modified: | 11 Oct 2024 13:57 |
Repository Staff Only: item control page