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Large-scale climate variables  

Sub-grid-scale 
Convective Processes

Fully connected Neural Net 

Beucler et al. (2019)

Rasp et al. 2018; Yuval et al. 2020; Brenowitz and Bretherton 2018; Mooers et al. 2021; Wang et al. 2022  

Convective Processes are complex, can we decode them? YES! 

Schneider et al. (2017)



Convective Processes are complex, can we encode them? 
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Schneider et al. (2017)
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1. Variational Encoder Decoder (VED) architecture

• VED mirroring superparametrisation (SP, Grabowski (2001)) of Community 
Atmosphere Model (CAM, Collins et al. (2006)) Version 3 with aquaplanet
setup 

• VED : Encoder + Decoder, Input variables: CAM, Output variables: CAM + SP

Behrens et al. (2022)
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2. Realistic reproduction of Convective Processes

• Compare against Artificial Neural Net (ANN) of Rasp et al. (2018) for R² of dT/dt on 700 hPa

• Good reproduction of VED in mid latitudes and near InterTropical Convergence Zone (ITCZ)

• Weaker performance around Subtropical Highs (~ 20° N/S)

• Slightly decreased performance with respect to ANN (5 nodes in latent space vs. 256 nodes per layer)

Behrens et al. (2022)
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3. Physically Meaningful Latent Space 

• 2D Principal Component 
Analysis (PCA) 
compression of VED 
latent space:

− Compute conditional 
averages of convection 
related variables

• Discriminate geographic 
origin of samples in 
latent space of VED

• enhanced 
interpretability 
compared to traditional 
input PCA

Behrens et al. (2022)
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4. Convective Processes Predictability

• Example: Latent Node 4
− Translation along one latent 

dimension, while keeping the 
others fixed to their median values

− Feed resulting ztranslation array into 
Decoder

Increasing percentiles

vertical profile or 
2D variable

𝑧𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑁𝑜𝑑𝑒 4 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑧1 , 𝑚𝑒𝑑𝑖𝑎𝑛 𝑧2 , 𝑚𝑒𝑑𝑖𝑎𝑛 𝑧3 , 𝑝𝑒𝑟𝑐 𝑧4 , 𝑚𝑒𝑑𝑖𝑎𝑛 𝑧5

Behrens et al. (2022)
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4. Convective Processes Predictability

• Example: Latent Node 4
− Translation along one latent 

dimension, while keeping the 
others fixed to their median values

− Feed resulting ztranslation array into 
Decoder

High, optical thin, non-
precipitating cirrus-like 
convection

Behrens et al. (2022)
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4. Conv. Processes Predict./ Node 4: Mid latitude storm tracks

• Example: Latent Node 4
− Translation along one latent 

dimension, while keeping the 
others fixed to their median values

− Feed resulting ztranslation array into 
Decoder

High, optical thin, non-
precipitating cirrus-like 
convection

Low, optical thick, precipitating 
maritime convection

Separation of two mid lat. Convective Regimes along latent dimension 
Behrens et al. (2022)



5. Understand Convective Processes in Climate Model with VED 

Low, Optical thick, precipitating 
maritime convection
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Outlook

Low, Optical thick, precipitating 
maritime convection

● VED for cross-validation of existing Convective Regimes 
based on observations or simulations

● VED for identification of clusters / regimes based on GCM 
runs for Dynamics, Convection and other complex processes

● VED for development of regime-oriented parametrisations 
in Earth System Models
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Thank you for your attention! 
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