Behrens, Gunnar und Beucler, Tom und Gentine, Pierre und Iglesias-Suarez, Fernando und Pritchard, Michael und Eyring, Veronika (2022) Non-Linear Dimensionality Reduction With a Variational Encoder Decoder (VED) to Understand Convective Processes in Climate Models. American Geophysical Union Fall Meeting 2022, 2022-12-12 - 2022-12-16, Chicago, USA.
PDF
3MB |
Offizielle URL: https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1142078
Kurzfassung
Deep learning can accurately represent sub-grid-scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoders (VED), a non-linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed-forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; b) high optically thin cirrus-like clouds are separated from low optically thick cumulus clouds; and c) shallow convective processes are associated with large-scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub-grid-scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties. A manuscript of this work was recently accepted in AGU JAMES on July 11th, 2022 and is accessible at https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003130 . The content of this work was not presented at an AGU conference yet.
elib-URL des Eintrags: | https://elib.dlr.de/207305/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||
Zusätzliche Informationen: | Funding for this presentation was provided by the European Research Council (ERC) Synergy Grant “Understanding and modeling the Earth System with Machine Learning (USMILE)” under the Horizon 2020 research and innovation programme (Grant agreement No. 855187). | ||||||||||||||||||||||||||||
Titel: | Non-Linear Dimensionality Reduction With a Variational Encoder Decoder (VED) to Understand Convective Processes in Climate Models | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | Dezember 2022 | ||||||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Convective Processes, Large-scale Drivers of Convective Processes, Atmospheric Modelling, Deep Learning, Interpretability, Dimensionality Reduction | ||||||||||||||||||||||||||||
Veranstaltungstitel: | American Geophysical Union Fall Meeting 2022 | ||||||||||||||||||||||||||||
Veranstaltungsort: | Chicago, USA | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 12 Dezember 2022 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 16 Dezember 2022 | ||||||||||||||||||||||||||||
Veranstalter : | American Geophysical Union | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Atmosphären- und Klimaforschung | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse | ||||||||||||||||||||||||||||
Hinterlegt von: | Behrens, Gunnar | ||||||||||||||||||||||||||||
Hinterlegt am: | 11 Okt 2024 13:57 | ||||||||||||||||||||||||||||
Letzte Änderung: | 11 Okt 2024 13:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags