Vahid Yousefnia, Kianusch and Bölle, Tobias and Zöbisch, Isabella and Gerz, Thomas (2024) A machine-learning approach to thunderstorm forecasting through post-processing of simulation data. Quarterly Journal of the Royal Meteorological Society, 150 (763), pp. 3495-3510. Wiley. doi: 10.1002/qj.4777. ISSN 0035-9009.
|
PDF
- Published version
4MB |
Official URL: https://doi.org/10.1002/qj.4777
Abstract
Thunderstorms pose a major hazard to society and the economy, which calls for reliable thunderstorm forecasts. In this work, we introduce SALAMA, a feedforward neural network model for identifying thunderstorm occurrence in numerical weather prediction (NWP) data. The model is trained on convection-resolving ensemble forecasts over central Europe and lightning observations. Given only a set of pixel-wise input parameters that are extracted from NWP data and related to thunderstorm development, SALAMA infers the probability of thunderstorm occurrence in a reliably calibrated manner. For lead times up to 11 h, we find a forecast skill superior to classification based only on NWP reflectivity. Varying the spatiotemporal criteria by which we associate lightning observations with NWP data, we show that the time-scale for skillful thunderstorm predictions increases linearly with the spatial scale of the forecast.
| Item URL in elib: | https://elib.dlr.de/207131/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Document Type: | Article | ||||||||||||||||||||
| Title: | A machine-learning approach to thunderstorm forecasting through post-processing of simulation data | ||||||||||||||||||||
| Authors: |
| ||||||||||||||||||||
| Date: | 22 June 2024 | ||||||||||||||||||||
| Journal or Publication Title: | Quarterly Journal of the Royal Meteorological Society | ||||||||||||||||||||
| Refereed publication: | Yes | ||||||||||||||||||||
| Open Access: | Yes | ||||||||||||||||||||
| Gold Open Access: | No | ||||||||||||||||||||
| In SCOPUS: | Yes | ||||||||||||||||||||
| In ISI Web of Science: | Yes | ||||||||||||||||||||
| Volume: | 150 | ||||||||||||||||||||
| DOI: | 10.1002/qj.4777 | ||||||||||||||||||||
| Page Range: | pp. 3495-3510 | ||||||||||||||||||||
| Publisher: | Wiley | ||||||||||||||||||||
| ISSN: | 0035-9009 | ||||||||||||||||||||
| Status: | Published | ||||||||||||||||||||
| Keywords: | convection, ensembles, forecasting (methods), mesoscale, numerical methods and NWP, severe weather, thunderstorms/lightning/atmospheric electricity | ||||||||||||||||||||
| HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
| HGF - Program: | Aeronautics | ||||||||||||||||||||
| HGF - Program Themes: | Air Transportation and Impact | ||||||||||||||||||||
| DLR - Research area: | Aeronautics | ||||||||||||||||||||
| DLR - Program: | L AI - Air Transportation and Impact | ||||||||||||||||||||
| DLR - Research theme (Project): | L - Climate, Weather and Environment | ||||||||||||||||||||
| Location: | Oberpfaffenhofen | ||||||||||||||||||||
| Institutes and Institutions: | Institute of Atmospheric Physics > Applied Meteorology | ||||||||||||||||||||
| Deposited By: | Vahid Yousefnia, Kianusch | ||||||||||||||||||||
| Deposited On: | 07 Oct 2024 13:27 | ||||||||||||||||||||
| Last Modified: | 07 Oct 2024 13:27 |
Repository Staff Only: item control page