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Abstract
Thunderstorms pose a major hazard to society and the economy, which calls

for reliable thunderstorm forecasts. In this work, we introduce SALAMA,
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a feedforward neural network model for identifying thunderstorm occur-
rence in numerical weather prediction (NWP) data. The model is trained
on convection-resolving ensemble forecasts over central Europe and lightning
observations. Given only a set of pixel-wise input parameters that are extracted
from NWP data and related to thunderstorm development, SALAMA infers the
probability of thunderstorm occurrence in a reliably calibrated manner. For
lead times up to 11 h, we find a forecast skill superior to classification based
only on NWP reflectivity. Varying the spatiotemporal criteria by which we asso-
ciate lightning observations with NWP data, we show that the time-scale for
skillful thunderstorm predictions increases linearly with the spatial scale of
the forecast.

KEYWORDS

convection, ensembles, forecasting (methods), mesoscale, numerical methods and NWP, severe
weather, thunderstorms/lightning/atmospheric electricity

1 | INTRODUCTION

(Yasuda et al., 2012), which jeopardizes the transition to
sustainable energy production. Finally, since the number

Though thunderstorms undoubtedly constitute inspiring
natural spectacles that move any human being to a certain
extent, their impact in the form of lightning, strong winds,
and heavy precipitation (including hail) is hazardous to
society and the economy. Besides the small but real chance
of being struck by lightning (Holle, 2016), thunderstorms
pose a threat to crops and livestock (Holle, 2014) as well,
and they are known to trigger wild fires (Veraverbeke
et al., 2017). In addition, they constitute a major safety
concern for aviation (Borsky & Unterberger, 2019; Gerz
et al., 2012). Furthermore, thunderstorms and lightning
damage electrical infrastructure such as wind turbines

of severe thunderstorms is expected to increase due to cli-
mate change (Diffenbaugh et al., 2013; Réidler et al., 2019),
accurate thunderstorm forecasts become ever more rele-
vant.

Thunderstorm forecasts with lead times of more than
1h usually rely on numerical weather prediction (NWP).
This method consists of simulating the future atmospheric
state by numerically solving equations derived from the
laws of physics. The accuracy of NWP has improved with
the advent of high-performance computing, the increased
availability of observational data through satellite imagery,
and advances in data assimilation (Bauer et al., 2015;
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Yano et al., 2018). In order to use NWP data for thunder-
storm predictions, one needs to know how thunderstorms
manifest themselves in terms of the NWP output fields.
In a post-processing step, this knowledge is then used to
identify signs of thunderstorm occurrence in simulation
data.

Various ideas for identifying signs of thunderstorm
occurrence have been put forward in recent years. For
instance, post-processing of NWP data has been blended
with nowcasting methods (Hwang et al, 2015; Kober
et al., 2012). Empirical knowledge on convective activ-
ity has been translated into expert systems using fuzzy
logic (Li et al., 2021; Lin et al., 2012). The fuzzy logic
technique allows the construction of decision rules for
thunderstorm occurrence based on domain knowledge.
Lately, machine-learning (ML) methods based on artifi-
cial neural networks have gained popularity. These meth-
ods generalize the fuzzy logic approach in the sense that
decision rules are constructed by solving a data-driven
optimization problem. Previous studies include neural net-
works with relatively few neurons (Jardines et al., 2021;
Kamangir et al., 2020; Sobash et al., 2020; Ukkonen &
Mikeld, 2019), as well as deep neural networks with convo-
lutional layers and millions of trainable parameters (Geng
etal., 2021; Zhou et al., 2022). Findings suggest that neural
network models are more skillful at predicting thunder-
storm occurrence than comparable ML approaches like
random forests (Herman & Schumacher, 2018; Ukkonen &
Mikeld, 2019). In order to learn predicting thunderstorm
occurrence, supervised ML methods require a ground
truth of thunderstorm activity. It may be provided by satel-
lite imagery (Jardines et al., 2021; Zhou et al., 2022), radar
data (Burke et al., 2020; Gagne et al, 2017; Leinonen
et al., 2022), storm reports (Loken et al., 2020; Sobash
et al., 2020), and lightning (Geng et al., 2021; Ukkonen &
Mikels, 2019).

The promising results in ML have encouraged us to
apply neural network methods to historical simulation
data of ICON-D2-EPS, an NWP ensemble model for cen-
tral Europe with a horizontal resolution of ~2 km (Reinert
et al., 2020; Zingl et al., 2015). ICON-D2-EPS is a
limited-area model that explicitly resolves convection and
isrun operationally by the German Meteorological Service.
To the best of our knowledge, neural networks have not
yet been employed for the identification of thunderstorm
occurrence in ensemble data with a comparable horizon-
tal resolution. In this work, we present the neural network
model SALAMA (Signature-based Approach of Identify-
ing Lightning Activity Using Machine Learning). It has
been trained to predict thunderstorm occurrence through
the post-processing of simulation data. In Section 2 we
describe how independent datasets for the training, test-
ing, and validation of our model have been compiled from

NWP forecasts and lightning data. Details on the ML
architecture are provided in Section 3. While thunder-
storm occurrence is identified in a pixel-wise manner, we
systematically vary the spatiotemporal criteria by which
the lightning observations are associated with the NWP
data. This enables us to study the effect of different spa-
tial scales on the model identification skill and allows us
to estimate the advection speed of thunderstorms. Further
results are presented in Section 4 and demonstrate that,
for lead times up to at least 11 h, SALAMA is more skillful
than a baseline method based only on convective available
potential energy. In addition, we show a linear relation-
ship between the spatial resolution scale of our model
and the time-scale during which skill decreases with lead
time. This is consistent with earlier findings that resolving
smaller scales brings faster growing forecast errors about
(Lorenz, 1969; Selz & Craig, 2015).

2 | DATA

We collected simulation data from the ICON-D2-EPS
ensemble model, as well as lightning observations from
the lightning detection network LINET (Betz et al., 2009).
The simulations were used to extract predictors of thun-
derstorm occurrence, and lightning observations serve as
ground truth.

2.1 | Study region and period

The model domain of ICON-D2-EPS covers the areas of
Germany, Switzerland, Austria, Denmark, Belgium, the
Netherlands and parts of the neighboring countries. For
our study, we cropped the model domain at its borders
by approximately 100 km to reduce boundary computa-
tion errors. In a cylindrical projection, our study region
corresponds to a rectangle with the southwest corner
located at 45° N, 1° E, the northeast corner located at 56°
N, 16° E and all sides being either parallels or meridians;
see Figure 5.

There are daily model runs every 3h starting at
0000 UTC. We collected simulation data from June to
August 2021 over the entire study region in hourly steps,
taking always the latest available forecast for each hour.
Following this procedure results in forecasts with lead
times of 0, 1, or 2 h.

Each model run has 20 ensemble members that dif-
fer from each other in a manner consistent with the NWP
uncertainty in the initial conditions, model error, and
boundary conditions (Reinert et al., 2020). In Section 4.2,
we will relate NWP forecast uncertainty, estimated by
ensemble variability, to ML model skill.
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2.2 | NWP predictors
The atmospheric fields used as predictors of thunder-
storm occurrence in this study are given in Table 1. They
have been selected as follows. We considered as candi-
date predictors all two-dimensional fields provided in
ICON-D2-EPS, as well as two ICON-D2-EPS pressure-level
fields associated with deep moist convection in the liter-
ature; namely, the relative humidity at 700 hPa and the
vertical wind speed in pressure coordinates at 500 hPa
(Li et al., 2021). In addition, we stipulated that the predic-
tors be available on the open-data server of the German
Meteorological Service (https://opendata.dwd.de), such
that the trained model can eventually be used in real time.
For a given candidate input field, we retrieved values on
the grid points and time instants on the study domain and
period. We also checked for each value whether a thun-
derstorm occurred (see Section 2.3). Next, we compared
histograms of the distribution of the given field during and
in the absence of thunderstorm occurrence and kept only
fields that differed significantly in the two distributions.
As shown in Table 1, all predictors can be related
to thunderstorm activity through physical mechanisms,
like instability and moisture. In particular, our selection
process has led to predictors that agree with findings in
the literature (Jardines et al., 2021; Leinonen et al., 2022;

TABLE 1

Physical significance
Instability CAPE_ML
CEILING
OMEGAS500
PS
PMSL
Cloud cover CLCH
CLCM
CLCL
CLCT
Precipitation and moisture DBZ_CMAX
ECHOTOP
RELHUM?700
RELHUM_2M
Column-integrated water quantities TQC, TQC_DIA
TQG
TQI, TQI_DIA
TQV, TQV_DIA
TWATER

ICON parameter name

Royal Meteorological Society

Ukkonen & Mikeld, 2019). Conversely, convective inhibi-
tion, which is sometimes listed as a convective predictor
(Kamangir et al., 2020), has not passed the selection pro-
cess. This is likely due to the fact that we have checked
for predictive power in terms of developed thunderstorms.
Convective inhibition, however, correlates with the hours
leading up to a thunderstorm and has been removed once
the storm reaches its mature stage.

It is worth stressing that we have excluded certain
parameters on purpose, namely, the geographical location
of a thunderstorm event, the time of the day, and the time
of the year. In doing so, we assume the existence of a uni-
versal signature shared by all thunderstorms, irrespective
of where and when they occur. In addition, the list of pre-
dictors does not include the lead time of the forecast. In
Section 4 We check whether our model, which has been
trained on data with lead times between 0 and 2 h, displays
skill on data with longer lead times.

2.3 | Lightning observations

In supervised learning, ML models are trained on data
for which the ground truth is known. For this reason, we
required knowledge of thunderstorm occurrence for our
study domain and period. By reason of their high detection

List of the 21 input parameters used in the study (“DIA”: including sub-grid scale).

Description

Mixed-layer convective available potential energy
Ceiling height

Vertical wind speed in pressure coordinates at 500 hPa
Surface pressure

Surface pressure reduced to mean sea level

High level clouds (0-400 hPa)

Mid-level clouds (400-800 hPa)

Low-level clouds (800 hPa to soil)

Total cloud cover

Maximal radar reflectivity

Echotop pressure

Relative humidity at 700 hPa

2 m relative humidity

Cloud water

Graupel

Ice

Water vapor

Total water content
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efficiency and spatial accuracy over the entire study
region, we employed lightning observations to assess the
occurrence of thunderstorms. Specifically, we resorted to
the LINET network (Betz et al., 2009), which exploits the
radio spectrum to continuously measure strokes of light-
ning over Europe. The technology achieves a detection effi-
ciency of more than 95% and an average location accuracy
of 150 m. Though the technology is able to differentiate
between cloud-to-ground and intracloud flashes, we have
considered all lightning events as we are only interested in
the yes/no occurrence of thunderstorm activity.

Given a set of predictors retrieved from a grid point x
on the study domain at time ¢ during the study period, we
considered thunderstorm activity to occur at (x, t) if a flash
was detected at any (x;, t;) with

[|lx —x||| < Ar [t — 4] < At, (1)
where || - || denotes the great-circle distance between x
and x;. We trained our model with different values for
the spatial and temporal thresholds Ar and Af in order
to study the relationship between them and classification
skill systematically.

2.4 | Compiling independent datasets

The data obtained from NWP and lightning observa-
tions can be considered a set of tuples (&,y), where & €
R" denotes the n =21 input parameters and y € {0,1}
corresponds to a label of the ground truth (1: thunder-
storm occurrence; 0: no thunderstorm occurrence). As
the input fields were provided on a triangular grid, we
first performed an interpolation onto a 0.125° x 0.125°
longitude-latitude grid. The labels were produced on the
same grid. For each full hour during the study period, for
each ensemble member and for each grid point, we fetched
the input parameters and the corresponding label, taking
always the latest available forecast.

We compiled three statistically independent datasets.
A training set was used only for training the neural net-
work model (a precise definition of training is given in
Section 3.1), whereas its skill was measured on a test set
with data that the model had not seen during training.
A third dataset, the validation set, was used to moni-
tor training progress (see Section 3.1). In an attempt to
assure statistical independence between the datasets, we
took two measures. First, assuming possible day-to-day
correlations in the input parameters (e.g., induced by the
synoptic scale) to be negligible for convective events with
life spans of the order of a few hours, we used separate days
for training, testing, and validation. In addition, we took
into account that intense thunderstorms that form in the
afternoon may well live on after 0000 UTC. We therefore

FIGURE 1

Days (from 0800 UTC to 0800 UTC) during the
summer of 2021 that were used for compiling the datasets for

training (dark background), testing (light background with bold
numerals), and validation (light background). The days have been
distributed at random among the three sets.

defined days to begin at 0800 UTC, a time of the day chosen
by checking when lightning activity in the collected data is
minimal. The latter measure prevents data from one thun-
derstorm at different times appearing in separate datasets.
Figure 1 offers an overview of the days contained in each
dataset. The days were randomly distributed among the
three sets. Additionally, we randomly subsampled the data
such that the training set consists of 4 X 10° tuples, and the
test and validation sets each contain 10° tuples.

The rarity of thunderstorms makes predicting their
occurrence more challenging, as ML models tend to
struggle with learning from unbalanced datasets (Sun
et al., 2009). As a matter of fact, we verified that, when
trained on a climatologically consistent dataset, our model
would predict the majority class (i.e., no thunderstorm)
at every occasion. We therefore undersampled the major-
ity class in the training set, such that both labels appear
equally frequently (class balance). On the other hand, the
validation and testing sets remain climatologically consis-
tent since we wish to quantify model performance in a
realistic setting. Having different sample climatologies in
the training and test sets, however, requires model output
calibration, which is discussed in Section 3.2.

3 | METHODS

In this section, we provide details on SALAMA, focusing
on how it has been trained and calibrated. In addition,

d '€9/ 7202 'X0L8LLYT

1BWL//sdny woyy

8508017 SUOLULLIOD 3AIE1D 3|eo | (ddde 8y3 Aq peuenoB ake Saoiie YO ‘95N JO S9N Joj Ak 8UIIUO /B]IA UO (SUOIPUOD-PL-SLLBILIOD" A8 |IW ARe1q 1)BUTIUO//:SANY) SUORIPUOD PUe SWwie | 84} 89S [7202/0T/20] U0 Aliqi8uluO A8|IM “UBLISD ZHOYWBH " Ul Myed Wney *N-4nT 4 Wniez yosid Aq 2Ly b/200T 0T/I0p/Loo A A



VAHID YOUSEFNIA ET AL.

Quarterly Journal of the ERMets

we introduce metrics for the evaluation of model skill and
present a baseline model for comparison.

3.1 | Model description

It is worthwhile to introduce some ML terminology. The
three datasets used for training, testing, and validation (see
Section 2.4) are made up of examples (£, y). Each example
consists of a pattern & € R” of n input features and a label
y e {0,1}.

Given a pattern &, the problem at hand is to infer the
probability of thunderstorm occurrence, which constitutes
a task known as binary classification. In the following, we
consider both the pattern and its corresponding label to
originate from a random experiment. Therefore, let Z be an
n-dimensional random variable for the pattern and let Y
be arandom variable of thunderstorm occurrence (1: thun-
derstorm; 0: no thunderstorm). We are interested in P(Y =
1|2 = &); namely, the conditional probability of thunder-
storm occurrence if the pattern is known. A feedforward
artificial neural network model is a function f : R" —
(0, 1) that models the relationship between the input pat-
tern and the corresponding probability of thunderstorm
occurrence. We refer to f simply as a neural network. Neu-
ral networks use compositions of matrix multiplications,
as well as nonlinear operations referred to as activation
functions. The architecture of our neural network is pre-
sented in Figure 2. It consists of the input and output layers
as well as hidden layers, where each layer is a vector of
numbers obtained from the previous layer by one matrix
multiplication and by applying an activation function to
the result in a component-wise manner. The complexity
of f is adjustable through the number of hidden layers
and the size of each hidden layer; that is, the number of
nodes. Our model has three hidden layers and 20 nodes per

51 thunderstorm 3 hidden layers and 20 nodes

featur>@ @ @
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@
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FIGURE 2 The architecture of SALAMA. Input features are
scaled to order 1. We use rectified linear units as activation
functions in the hidden layers. A sigmoid function maps the output
layer to the open interval (0, 1).

thunderstorm
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Royal Meteorological Society

hidden layer. Moreover, we use rectified linear units for the
hidden layers and a sigmoid function to map the output
layer to a probability between zero and one.

The entries, also referred to as weights, of the matrices
that connect the layers are adjusted according to the data in
the training set. We therefore add a subscriptw € R¢ tof to
express the dependence on the d weights. If f, constitutes
an accurate representation of the conditional probability
of thunderstorm occurrence—thatis, (&) = P(Y = 1|12 =
&)—then the likelihood of observing a label y for a given
input feature & reads

fw(f)s y=1,
L(W|§»Y) =
{1 —fu®,  y=0.

()

Denote by (£€7,y®),_; .y the training set with N exam-
ples. The most likely configuration of weights, given the
training set, is then obtained by minimizing the negative
logarithm of the likelihood function,

N
—log £(w) = = ) log L(wl|&®,y), 3)

i=1

with respect to the weights. The expression in Equation (3)
is referred to as the binary cross-entropy loss func-
tion in ML terminology. The process of determining the
weights that minimize loss is called training. We trained
SALAMA using the robust iterative stochastic method
Adam (Kingma & Ba, 2014). However, if one used the con-
figuration of weights that minimizes Equation (3) exactly,
a neural network would likely suffer from overfitting (i.e.,
learning parts of the noise in the data as well). To this end,
we implemented an early stopping procedure, in which
loss was monitored on the validation set during training.
Once the validation loss no longer decreased, training was
stopped.

Before training, each input feature has been scaled in
away that its sample standard deviation in the training set
is of the order of unity. In addition, we trained not only on
the architecture presented in Figure 2 but also varied the
number of hidden layers, as well as the number of nodes
per layer. We found that, once a certain complexity was
reached in terms of the size of the network, adding new
nodes or layers had no effect on the validation loss at the
end of training. The architecture in Figure 2 constitutes the
smallest network for which this complexity threshold has
been exceeded.

3.2 | Analytic model calibration

In order to address the climatological rarity of thun-
derstorm occurrence, we have artificially increased the
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fraction of positive examples in the dataset used for the
training of our neural network (see Section 2.4). In this
section, we explain why this dataset modification causes
our model to be miscalibrated and derive an analytic cor-
rection for model output calibration.

It is crucial to understand that if the trained model
were naively applied to a test set with a different fraction
of positive examples than in the training set, the produced
probabilities would be inconsistent with the observed rel-
ative frequency of thunderstorm occurrence. In order to
see this, we use Bayes’ theorem to expand the conditional
probability of thunderstorm occurrence given a pattern &,
which yields

PE=¢&Y=DPY =1)

PY=1E=¢) = 4
(Y =1E=9) PE—E) @
The denominator can be expressed as
PE=§=PE=¢lY=DPY =1
+ P(E = &|Y = 0)P(Y =0). (5)

Let P(Y =1) =1 - P(Y = 0) = g, where g denotes the cli-
matological probability of thunderstorm occurrence with
no prior knowledge. Then,

1

PY =1E=8 =i ora/e

(6)

where the residual function R(¢) = P(E = €|Y = 0)/P(E =
E]Y =1) is not expected to depend on g. Equation (6)
shows that the conditional probability of thunderstorm
occurrence carries an implicit g dependence. The training
set contains an increased fraction g of positive examples
(in our work, g = 1/2), whereas the corresponding frac-
tion in the test set is (up to fluctuations due to the finite
sample size) equal to the climatological value g. During
training, therefore, the neural network learns to produce
the following model output:

1

1+ (1-DRE/Z 2

fw(":a g) =

When we want to apply our neural network to a dataset
with g # g, the correct probability output reads

Jw(&.8)

ful&®) + 221 - fu(8,8) ®
g 1-g

fw(g’ g =

which can be derived by formulating Equation (7) with g
and g and using one equation to eliminate R(€) in the other
one. On the other hand, if the sample climatologies of the
training set and test set are equal (§ = g), Equation (8)
yields fw(&,2) = fw(&, ); that is, no probability correction
is needed.

If the model probability output is consistent with the
observed relative frequency of thunderstorm occurrence,
the model forecasts are referred to as reliable. In order
to check whether our neural network provides reliable
forecasts, we used the test set to produce a reliability
diagram. For this purpose, one partitions the interval
(0,1) of possible forecast probabilities into bins. For each
bin, one considers all examples whose model probability
falls into the bin. Then, one computes the relative fre-
quency of thunderstorm occurrence and plots it against
the bin-averaged model probability per bin. The result-
ing curve is referred to as the calibration function. An
example for one configuration of lightning labels is shown
in Figure 3a, for which 10 equidistant bins have been
used. Shown are two calibration functions: The light
gray line corresponds to a calibration function “without”
any probability correction, whereas the solid black line
results from applying Equation (8) to our model out-
put. The uncertainty on the observed frequency spans
the 5th and 95th percentiles of fluctuations and has
been estimated through a bootstrap resampling proce-
dure similar to Brocker and Smith (2007a): By drawing
with replacement, one produces variations of the original
test set and considers the sample-to-sample fluctuations
of observed relative frequencies. The uncalibrated line
severely overestimates the relative frequency of thun-
derstorm occurrence at all model probabilities. As has
been worked out, this is not a result of faulty training
but stems from having different sample climatologies in
the training and test sets. After calibration, however, our
model produces reliable forecasts for probabilities close
to 0 and 1. On the other hand, our model underestimates
the relative frequency of thunderstorm occurrence for
forecast probabilities below 0.6. Further calibration could
be done using statistical methods like isotonic regression
(Niculescu-Mizil & Caruana, 2005), which is beyond the
scope of this work. Instead, we consider our model suffi-
ciently reliable and appreciate that the level of reliability
has been attained by means of the analytical correction,
Equation (8), alone.

In addition to calibration curves, binning the forecast
probabilities allows the introduction of two useful metrics
of classification skill. Of the N examples in the test set, let
N; fall into bin i with bin width Ap;, bin-averaged model
probability p; and observed relative frequency o; of thun-
derstorm occurrence. We then define the following two
bin-wise terms:

/A Ny e
l—g(l_g)N(pl 8", ©)
/AP N oo
i = dl-g N(Pz 0;)°. (10)
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1.0 = TABLE 2 Contingency matrix for binary classification.
0.8 10* Forecast Observed thunderstorm
0.6 thunderstorm True False

s

I 0.4 102 < True Hit False alarm
0.2 False Miss Correct reject
0.0 100

RES, REL
o
[N)
u

o
o
o

FIGURE 3 Reliability diagram of SALAMA, evaluated for
the test set with the label configuration Ar = 15km, At = 30 min
(see Section 2.3). (a) Calibration curve after applying probability
correction, Equation (8) (black solid line), and before (gray light
dotted line), and histogram of examples per bin. Perfect reliability is
indicated by a dashed diagonal. Shaded band corresponds to the
symmetric 90% confidence interval obtained by 200 bootstrap
resamples. (b) Bin-wise resolution (RES) and reliability (REL)—see
Equations 9 and 10—and their relation to the Brier skill score (BSS;
see Section 3.3) as a function of model probability.

Up to afactor g(1 — g), known as the uncertainty term, the
sums ), Ap;RES; and ), Ap;REL; are respectively called
the resolution and reliability of the model. Resolution mea-
sures forecast variance, with higher values of resolution
indicating a better ability of the model to differentiate
between thunderstorm and non-thunderstorm patterns
(Toth et al., 2003). Reliability quantifies the mean-squared
deviation of the calibration curve from the diagonal. The
bin-wise terms defined in Equations 9 and 10 offer an
overview of how much each probability bin contributes
to reliability and resolution. For instance, both resolution
and reliability are most impacted by examples with model
probabilities of ~0.25.

3.3 | Skill evaluation metrics

Metrics for evaluating classification skill using a test set
with N examples include the Brier score (BS),

N

BS= Y (¥ —y®P2, p® =fu®. 9. (1)

k=1

which is known for being strictly proper (Brocker &
Smith, 2007b). Normalization with a reference BS, BS;ef =
S (g —y9)2, of a random climatological model yields
the Brier skill score (BSS):

BS
Bsref .

BSS=1- (12)

Murphy (1973) showed that BSS can be written as the dif-
ference between resolution and reliability (see Section 3.2).
Thus, in terms of Equations (9) and (10), BSS is given by
the area between RES and REL as functions of p. This is
illustrated in Figure 3b.

Though the BSS directly acts on the probability out-
puts p® of the model—see Equation (11)—a large class
of classification metrics requires the conversion of proba-
bilities to binary output first. This is done by introducing
a decision threshold p. If p > p, thunderstorm occurrence
for the corresponding example is deemed “true,” other-
wise it is “false.” In combination with the two options
from the label, there are four possible outcomes for each
example. They are presented as a contingency matrix
in Table 2.

Though there are an infinite number of options to com-
bine the four possible outcomes to a single skill score, we
selected the scores in this study based on their suitabil-
ity for tasks with significant class imbalance. Namely, we
do not wish to reward our model for correctly classifying
the majority class. This amounts to dismissing scores that
explicitly use correct rejects.

Given a test set and a fixed decision threshold, the prob-
ability of detection (POD) and false-alarm ratio (FAR) are
defined by

Hits

POD= ———,
Hits + Misses

(13)

FAR = — False alarms ‘
Hits + False alarms

14

Here, “Hits” refers to the number of examples in the test
set that qualify as a “hit” according to Table 2. POD is often
referred to as recall in the ML literature, whereas 1 — FAR
is also known as precision.

Precision and recall need to be simultaneously opti-
mized for a useful classifier. For instance, perfect recall
is easily achieved by predicting the thunderstorm class at
every occasion. For problems with class imbalance, a pop-
ular choice of combining the two scores consists of taking
the harmonic mean, which yields the F; score:

2
Fl = 1
POD™! + (1 — FAR)!

_ 2 X Hits
2 x Hits + Misses + False alarms

(15)
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Another option of combining the contingency matrix
elements is given by the critical success index (CSI):
Hits

CSI = — - .
Hits + Misses + False alarms

(16)

A modification of the CSI consists of subtracting as

many hits as a model randomly classifying according to

climatology would obtain. The equitable threat score (ETS)

reads

Hits — Hits by accident

Hits — Hits by accident + Misses + False alarms’
7)

where the hits by accident amount to gx (Hits+

False alarms).

ETS =

3.4 | Baseline model

As thunderstorms are accompanied by convective precip-
itation, radar reflectivity constitutes a natural surrogate
for thunderstorm occurrence in the nowcasting commu-
nity (Dixon & Wiener, 1993; Turner et al., 2004; Wilson
et al., 1998). ICON-D2-EPS outputs the column-maximal
radar reflectivity (see DBZ_CMAX in Table 1), which we
refer to as reflectivity in what follows. In order to con-
struct a baseline for comparison with SALAMA, we repeat
training our model, but use only reflectivity as input. The
architecture of the baseline model is identical to the one
presented in Figure 2 except for the input layer, which now
has only a single node.

Figure 4 shows the resulting reliability diagram. The
light dotted line corresponds to the uncorrected calibra-
tion curve, whereas the dash-dotted line results from
applying probability correction, Equation (8). The baseline

(a)

1.0 —
Correction, Eg. (8) et
0.8 g T 10
/ -~“Full calibration
0.6
IS
2
0.4 Uncalibrated 10
0.2
0.0 ----------------------- 100
1 — RES
w 0.10
e« - = REL
1} 0.05 BSS = 0.06
iy .
0090 02 04 06 0.8 1.0

Pi

N;

model produces well-calibrated output for small model
probabilities, whereas the model displays underconfi-
dence above probabilities of approximately 0.2. As exam-
ples with higher probabilities than 0.2 make up less than
1% of the examples in the test set, we therefore assume
that these examples did not contribute sufficiently to
the loss function, which instead favored well-calibrated
small probabilities. In an effort to construct a competitive
baseline model, we use the validation set to fit a linear
function to the part of the dash-dotted calibration curve
with probabilities higher than 0.15. Then, if the output of
the baseline model after application of probability correc-
tion, Equation (8), is denoted by p, the calibrated output
reads C(p) for p > 0.15, and p otherwise. The resulting
well-calibrated calibration curve is given by the solid line
in the reliability diagram. The histogram and the lower
panel in Figure 4a refer to the latter calibration curve.
One can see that BSS is essentially determined by the
baseline resolution. Both SALAMA (see Figure 3) and
the baseline model receive most contributions to the reli-
ability term from model probabilities around 0.2. As a
matter of fact, the baseline scores better than SALAMA
in terms of reliability. On the other hand, the base-
line resolution is significantly worse, which results in a
lower BSS.

Figure 4b shows the learned and calibrated rela-
tionship between NWP reflectivity and the correspond-
ing probability of thunderstorm occurrence. The herein
observed monotonously increasing relationship implies
that thunderstorms become more likely as reflectivity
increases. A typical threshold for defining thunderstorms
in nowcasting is 35dBZ (Dixon & Wiener, 1993; Mueller
et al., 2003), for which the probability of thunderstorm
occurrence reads 0.22.

o
o

Model probability
© © o o o o
N w H (6] [o)] ~

o
il

0.0 -40 -20 0 20 40 60

NWP reflectivity (dBZ)

FIGURE 4 Training of the baseline model. (a) Reliability diagram panels as in Figure 3, but for the baseline model. (b) Learned
relationship between the baseline input field and the corresponding probability of thunderstorm occurrence. BSS: Brier skill score; NWP:

numerical weather prediction; RES: resolution; REL: reliability.
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4 | RESULTS

SALAMA provides a general post-processing frame-
work for NWP ensemble forecasts. Whereas we trained
SALAMA on lead times up to 2h, we apply the same
model to all lead times and all ensemble members indi-
vidually, using neither the lead time nor the ensemble
member index as input feature. Working with ensemble
data, our framework readily allows us to study the ensem-
ble spread of thunderstorm occurrence. For example, if we
have, for a given location, a 3 h forecast of ICON-D2-EPS
at hand, it consists of 20 input feature tuples (one tuple for
each ensemble member). One can now compute a thun-
derstorm probability according to Equation (8) for each
member. As we will discuss in Section 4.2, the ensemble
spread of thunderstorm probability is linked to the NWP
forecast uncertainty of the input features. In the following,
we compare SALAMA with the baseline model based on
reflectivity (see Section 3.4) and move on to investigating

Royal Meteorological Society

how the spatiotemporal thresholds of the lightning label
configuration (see Section 2.3) influence the classification
skill of SALAMA as a function of lead time.

41 | Comparison with baseline model

In this section, we keep the thresholds of the lightning
label configuration (see Section 2.3) fixed to the particular
choice Ar = 15km, At = 30 min. The climatological frac-
tion of thunderstorm examples in the test set amounts to
g = 0.021 in this configuration. The results of this section,
however, do not change qualitatively if another configura-
tion is used.

As a first step, we visually compare the performance
of SALAMA and the baseline model in a case study. For
this purpose, we run SALAMA for three consecutive hours
of an evening with thunderstorm occurrence over south-
ern Germany. This day has not been used for the train-
ing of SALAMA. In Figure 5 we plot the probability of

SALAMA
1900 UTC

SALAMA
2000 UTC

SALAMA

2100 UTC 0.90

0.75

0.60

0.45

0.30

0.15

Baseline

/- Baseline
1900 UTC

2000 @TC

5 Baseline

2100 UTC 0.90

0.75

0.60

0.45

0.30

0.15

FIGURE 5 Probability of thunderstorm occurrence for June 23, 2021, from 1900 UTC on, for SALAMA (upper row) and the baseline
model (lower row). The model lead times for the three hours are 1 h, 2h, and 0 h, respectively. The filled contours display the result for the
first ensemble member of ICON-D2-EPS, whereas lightning labels (Ar = 15km, At = 30 min; see Section 2.3) are shown as black contours. A
jump in the color maps indicates the decision thresholds used for the evaluation of the skill scores in Table 3.
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thunderstorm occurrence for an arbitrary member of the
NWP ensemble for the entire study domain. Observed
thunderstorm occurrence is given by black contours. The
corresponding plots for the baseline model are added
below the panels of SALAMA. In this particular case
study, SALAMA tends to detect far more thunderstorm
pixels than the baseline model does. On the other hand,
SALAMA seems to produce more false alarms.

In order to compare the skill of SALAMA and our base-
line quantitatively for the entire study period, we evaluate
the skill scores introduced in Section 3.3. We use for this
purpose the test set introduced in Section 2.4, which con-
sists of examples of the entire summer of 2021. For some
of the scores, we need to set a decision threshold. As a
criterion, we demand that forecasts be unbiased (average
fraction of examples classified as thunderstorms is equal to
the observed fraction of thunderstorm examples), yielding
thresholds of 0.148 (SALAMA) and 0.126 (baseline). The
thresholds are also indicated in the color bars of Figure 5.
The threshold found for reflectivity corresponds to 28 dBZ
and is slightly below the typical literature threshold cited
in Section 3.4.

The performance of SALAMA and the baseline is sum-
marized in Table 3. Irrespective of the skill score under
consideration, SALAMA scores better than the baseline
model. The uncertainties are computed here, as well as for
the subsequent evaluations, by the bootstrap resampling
method introduced in Section 3.2. Note that we obtain
POD =1 — FAR = F; for both models. This is a result from
our choice of decision threshold: recall generally equals
precision for unbiased forecasts (Wilks, 2011).

Drawing (POD, 1 — FAR) for different decision thresh-
olds into one diagram, one obtains the precision-recall

TABLE 3  Scores for classification skill, evaluated on the test
set, for SALAMA and the baseline model. The probability
thresholds used for evaluation are chosen such that the forecast is
unbiased and amount to 0.148 (SALAMA) and 0.126 (baseline).
Uncertainties are obtained from 200 bootstrap resamples and show
the symmetric 90% confidence interval.

Skill score SALAMA Baseline
PR-AUC 0.358 (18) 0.141 (12)
BSS 0.209 (10) 0.063 (7)
POD 0.403 (16) 0.189 (12)
1-FAR 0.402 (17) 0.188 (13)
F 0.403 (15) 0.189 (12)
CSI 0.252 (12) 0.104 (7)
ETS 0.241 (12) 0.093 (7)

Abbreviations: BSS, Brier skill score; CSI, critical success index; ETS,
equitable threat score; FAR, false-alarm ratio; POD, probability of detection;
PR-AUC, area under the precision-recall curve.

—— SALAMA
Baseline

19.3%
AUC = 0.36

POD

FIGURE 6 Precision-recall curve for SALAMA (solid) and
the baseline model (dashed), evaluated on the test set. The
annotations added to the curves (for baseline in italics) correspond
to different decision thresholds; see Section 3.3. Gray dotted line
denotes models with no identification skill. Uncertainties are
obtained from 200 bootstrap resamples and show the symmetric
90% confidence interval. AUC: area under the curve; FAR:
false-alarm ratio; POD: probability of detection.

(PR) diagram in Figure 6. A random model with no skill
corresponds to the dashed horizontal curve 1 — FAR =
g, where g denotes the climatological fraction of posi-
tive examples in the test set. Models with skill display
PR curves above the horizontal line, with higher areas
under the curve (AUCs) indicating higher classification
skill. Both models considered in this study display higher
skill than a random model following climatology would.
SALAMA, however, has higher classification skill than the
baseline, as can be seen from the higher AUC in the PR
curve in Figure 6. The enhanced skill of SALAMA with
respect to the baseline model illustrates that a multiparam-
eter approach to thunderstorm forecasting is superior to
employing a single input feature.

4.2 | Lead time dependence
of classification skill

The datasets for training, testing, and validation intro-
duced in Section 2.4 and used in Section 4.1 are comprised
of NWP forecasts with lead times up to 2 h. The reason for
this choice was to train and evaluate our model in a setting
of minimal NWP forecast uncertainty. On the other hand,
this procedure raises the question whether the thunder-
storm signature learned by the model generalizes to NWP
data with higher lead times (and higher forecast uncer-
tainty). For this purpose, we generate test sets in which the
examples come from NWP forecasts with fixed lead time.
Each set contains 10° examples. We use the same dates as
for the test sets introduced in Section 2.4. In Figure 7 we
plot the SALAMA classification skill, measured in terms
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FIGURE 7

Classification skill as a function
of lead time for SALAMA (left)
and the baseline model (right).
The probability thresholds used
for evaluation are chosen such
that the forecast is unbiased and
amount to 0.148 (SALAMA)

SALAMA

Royal Meteorological Society

Baseline

and 0.126 (baseline).
Uncertainties are obtained
from 200 bootstrap resamples
and show the symmetric 90%
confidence interval. BSS: Brier

Skill score

skill score; CSI: critical success
index; ETS: equitable threat
score; FAR: false-alarm ratio;
POD: probability of detection;

PR-AUC: area under the
precision-recall curve.

of the skill scores introduced in Section 3.3 as a function
of lead time and compare it with the dependence obtained
for the baseline model. Figure 7 shows that, for SALAMA,
classification skill decreases approximately exponentially
(note the log-scaling of the y-axis) for lead times longer
than 1h, irrespective of the skill score under considera-
tion. The classification skill of SALAMA at a lead time of
1h is actually higher than at 0 h, which is likely a spin-up
effect from the NWP model (Sun et al., 2014). On the other
hand, SALAMA skill is systematically superior to baseline
skill for all lead times. In fact, even the 11-h lead-time skill
of SALAMA is higher than the baseline skill for any of
the lead times considered. For both models, the curves of
POD, 1 — FAR, and F; start close to one another but then
diverge from each other as lead time grows. As the equality
of precision and recall is indicative of unbiased forecasts, it
follows that forecasts become biased for higher lead times.
For small lead times, the forecasts are essentially unbiased.
This is consistent with the fact that the decision thresholds
have been chosen such that a test set containing lead times
up to 2 h yields unbiased forecasts.

It is tempting to assume that the decrease in skill
with lead time originates from an increasing NWP forecast
uncertainty for longer lead times. We can use ensemble
data to check this hypothesis. Let g be either one of the 21
input features or the model thunderstorm probability; that
is, a quantity that is given for each ensemble member and
for all lead times. Then, define the ensemble spread o"; of
q as the ensemble standard deviation of g:

U(,](tlead) = \/<q([lead)2> - <q(tlead)>2v (18)

Lead time (hr)

Lead time (hr)

where we make the dependence on the lead time fieyq
explicit. The angle brackets denote the average over all
20 ensemble members. Denote by ;é(tlead) the expression
obtained by performing an average of a(; over the entire
study region and all times associated with the test set.

Lastly, we define the normalized ensemble spread of g,

/
) = 2 (19)
04(0 hr)
as a function of lead time. It quantifies ensemble spread
in such a way that different input features can be directly
compared with each other. In Figure 8, the normalized
ensemble spread of each of the 21 input features is shown
as thin solid lines and the corresponding curve for the
model output of SALAMA is drawn in thick and dashed
lines. One can see that the ensemble spread does indeed
increase with lead time for most input features, with the
increase being approximately linear. The ensemble spread
of the SALAMA output increases in line with the majority
of the input features and with a similar slope. This suggests
that the decrease in classification skill observed in Figure 6
is solely due to the increasing variance in the simulation
data.

4.3 | Effect of the label size

So far, the temporal and spatial thresholds of the label
configuration have been fixed to Ar =15km and At =
30 min
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(henceforth referred to as the default configuration).
In this section, we study how varying the spatiotem-
poral thresholds affects the classification skill of
SALAMA.

As a first step, we compute reliability diagrams for
different label configurations. In Figure 9a we study a
configuration with smaller thresholds than for the config-
uration studied so far. Figure 9b displays a configuration
with reduced At and increased Ar. In Figure 9c, both
thresholds are increased with respect to the default con-
figuration. The exact choice of At and Ar for the three
panels is somewhat arbitrary but still allows for qualita-
tive insight. Irrespective of the configuration, forecasts are
well calibrated for small and large model probabilities. In
addition, model skill, quantified in terms of BSS, increases
from left to right. The diagrams show that the increase in
BSS is mainly due to enhanced contribution to resolution
from probabilities between 0.3 and 0.6, whereas reliability
stays approximately constant.

i Input feature
22,04 - SALAMA
o
0n
2
S 1.59
£
§ <=
0 2 4 6 8 10
Lead time (hr)
FIGURE 8 Normalized ensemble spread—see

Equation (19)—of input features in comparison with spread of
model thunderstorm probability as a function of lead time. Each
thin solid line refers to one of the 21 input features. The thick
dashed line is associated with SALAMA probability output. A
shaded band represents the symmetric 90% confidence interval of
uncertainty, estimated with 200 bootstrap resamples.

As we have seen in Section 4.2 that the qualitative lead
time dependence of SALAMA skill does not depend on
the skill score, we consider from now on only PR-AUC for
further investigations. We start by computing PR-AUC for
several label configurations, which is shown in Figure 10.
The color pattern in the figure suggests that the two thresh-
olds are not independent variables of classification skill.
Instead, one can find a parameter ¢ with the units of a
velocity such that classification skill is nearly constant
along lines:

s = Ar + cAt = const. (20)
Indeed, s corresponds to a spatial resolution scale; it
determines the minimal spatial accuracy that can be
expected from a model trained with a given label config-
uration. We expect the parameter c¢ to roughly quantify
the speed at which regions of thunderstorm occurrence
are advected in the atmosphere. A fit to the data pro-
vides ¢ = 5.2(3)m-s~!, which is similar to typical low- to
mid-tropospheric wind speeds in central Europe. Lines of
constant spatial scale appear as dashed lines in Figure 10.
Classification skill increases with s. This is in line with
the displayed observation of increased BSS in the relia-
bility diagrams. This is also consistent with the work of
Roberts (2008), which investigates the spatial variation
of precipitation forecast skill. Note that the spatiotem-
poral thresholds for the reliability diagram in the mid-
dle panel have been chosen such that s takes on the
same value as the default configuration (At = 30 min,
Ar =15km).

Next, we investigate how the decrease of classification
skill with lead time depends on the spatial scale. Moti-
vated by the observed decay of classification skill with
lead time (see Section 4.2), we fit an exponential func-
tion exp(—tieaqd/7) to the lead time dependence of classi-
fication skill (measured again by the PR-AUC). The skill
decay time z then provides a characteristic time-scale
for the decrease of classification skill. For each label

1.0 (a) — 1.0 (b) ; 1.0 (c) —

, ~/ 103 103 .. 103 _

I50.5 / 150.5 = 1505 g =
d 0.0 ---------- l"‘ 100 d 0.0 } --------------- ‘ 100 d 0.0 --------- foae " 100
« —— RES « — RES « —— RES

2025/ 20.25 20.25
v 0.16 —e REL G 0.20 _. R % 0.25 ~
x0.08%5 02 04 06 08 Lo =005 04 06 08 10 *0085" 02 04 06 08 10

Pi Pi Pi

FIGURE 9

Reliability diagrams as in Figure 3, but with label configurations (a) At = 15min, Ar = 9km (s = 14km), (b) At = 10 min,

Ar =21km (s = 24km), (c) At = 40 min, Ar = 24 km (s = 36 km). The spatial scale s is introduced in Equation (20). RES: resolution; REL:

reliability.
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FIGURE 10 Classification skill of SALAMA, expressed in

terms of the area under the precision-recall curve, as a function of
the label configuration (see Section 2.3). The slope of the dashed
lines is chosen such that classification skill is approximately
constant along the lines. Each line corresponds to a specific spatial
scale s; see Equation (20).
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FIGURE 11 Decay time of classification skill (quantified by

the area under the precision-recall curve) as a function of the
spatial scale. Each data point corresponds to one label configuration
in Figure 10. The parameters of a linear fit are also shown, as well as
the Pearson coefficient of correlation.

configuration in Figure 10, we compute the corresponding
spatial scale as well as 7. In Figure 11 we present a scat-
ter plot of = and s. The figure shows a tight positive linear
correlation between the two quantities, which means
that classification skill decreases more slowly for coarser
label configurations. This is in agreement with the
anticipation (Lorenz, 1969) that the ability to resolve
smaller scales in NWP models results in forecast errors

Royal Meteorological Society

growing more rapidly. Our finding is complementary to
convection studies involving a scale-dependent skill score
(Roberts, 2008) and high-resolution simulations (Selz &
Craig, 2015).

5 | CONCLUSION AND
PERSPECTIVES

Addressing the need for accurate thunderstorm forecast-
ing and leveraging advances in high-resolution NWP and
ML, we have presented SALAMA, a feedforward neural
network model that identifies thunderstorm occurrence
in NWP forecasts up to 11h in advance in a pixel-wise
manner. The inference of the probability of thunderstorm
occurrence is based on input parameters that are physi-
cally related to thunderstorm activity and do not explicitly
feature information on location, time, or forecast range.
This gives reason to expect that the signature learned by
the model generalizes to thunderstorms outside the study
region of this work and remains valid in a changing cli-
mate. In addition, the availability of all input features in
real time makes SALAMA readily available for operational
use.

We have addressed the technical challenge caused
by the rarity of thunderstorms and the corresponding
small fraction of positive examples by increasing this
fraction during training and analytically accounting for
the increase when testing. This approach has allowed us
to ensure reasonable reliability without calibration fits.
Furthermore, we have proposed a novel visualization of
reliability and resolution as a function of bin-wise model
probability. The visualization arguably proves useful for
evaluating how examples with a certain model probability
contribute to classification skill.

Working with ensemble data, we have studied how the
NWP forecast uncertainty depends on the lead time of the
forecast and related it to the classification skill decrease of
SALAMA. This has suggested that the decrease in skill is
the result of an increasing uncertainty in the input feature
forecasting.

During the training process, we have systematically
varied the spatiotemporal criteria by which we asso-
ciate lightning observations with NWP data. This has
allowed us to test SALAMA with different spatial scales
and to estimate the order of magnitude of the speed at
which thunderstorms are advected in the atmosphere.
We have shown that classification skill increases with
the spatial scale of the forecast and is higher than for a
baseline model based on NWP reflectivity alone. Further-
more, we have found that the decay time of classification
skill is proportional to the spatial scale. In combina-
tion with the result that the SALAMA classification skill
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is correlated with the NWP forecast uncertainty, our
findings have indicated that resolving thunderstorms at
smaller scales reduces the predictability of thunderstorm
occurrence.

In a future study, it will be useful to check the univer-
sality of the thunderstorm signature learned by SALAMA
by, for example, testing it on data outside of central Europe
or for a different time period than the summer of 2021.
Moreover, one may explore whether classification skill can
be improved by shifting from a pixel-wise consideration of
input features to taking their spatiotemporal structure into
account as well.
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