Vahid Yousefnia, Kianusch und Bölle, Tobias und Zöbisch, Isabella und Gerz, Thomas (2024) A machine-learning approach to thunderstorm forecasting through post-processing of simulation data. Quarterly Journal of the Royal Meteorological Society, 150 (763), Seiten 3495-3510. Wiley. doi: 10.1002/qj.4777. ISSN 0035-9009.
PDF
- Verlagsversion (veröffentlichte Fassung)
4MB |
Offizielle URL: https://doi.org/10.1002/qj.4777
Kurzfassung
Thunderstorms pose a major hazard to society and the economy, which calls for reliable thunderstorm forecasts. In this work, we introduce SALAMA, a feedforward neural network model for identifying thunderstorm occurrence in numerical weather prediction (NWP) data. The model is trained on convection-resolving ensemble forecasts over central Europe and lightning observations. Given only a set of pixel-wise input parameters that are extracted from NWP data and related to thunderstorm development, SALAMA infers the probability of thunderstorm occurrence in a reliably calibrated manner. For lead times up to 11 h, we find a forecast skill superior to classification based only on NWP reflectivity. Varying the spatiotemporal criteria by which we associate lightning observations with NWP data, we show that the time-scale for skillful thunderstorm predictions increases linearly with the spatial scale of the forecast.
elib-URL des Eintrags: | https://elib.dlr.de/207131/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | A machine-learning approach to thunderstorm forecasting through post-processing of simulation data | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 22 Juni 2024 | ||||||||||||||||||||
Erschienen in: | Quarterly Journal of the Royal Meteorological Society | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 150 | ||||||||||||||||||||
DOI: | 10.1002/qj.4777 | ||||||||||||||||||||
Seitenbereich: | Seiten 3495-3510 | ||||||||||||||||||||
Verlag: | Wiley | ||||||||||||||||||||
ISSN: | 0035-9009 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | convection, ensembles, forecasting (methods), mesoscale, numerical methods and NWP, severe weather, thunderstorms/lightning/atmospheric electricity | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||
HGF - Programmthema: | Luftverkehr und Auswirkungen | ||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | L AI - Luftverkehr und Auswirkungen | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Klima, Wetter und Umwelt | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Physik der Atmosphäre > Angewandte Meteorologie | ||||||||||||||||||||
Hinterlegt von: | Vahid Yousefnia, Kianusch | ||||||||||||||||||||
Hinterlegt am: | 07 Okt 2024 13:27 | ||||||||||||||||||||
Letzte Änderung: | 07 Okt 2024 13:27 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags