Patidar, Pankaj und Efremenko, Dmitry und Dey, Subhadip und Padilla-Zepeda, Efrain (2024) Selective Filtering for Enhancing Chlorophyll Retrieval Accuracy from Sentinel-3 Data Using Random Forest Models. In: 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024, Seiten 5902-5905. IEEE. IGARSS 2024, 2024-07-07 - 2024-07-12, Athens, Greece. doi: 10.1109/IGARSS53475.2024.10640797. ISBN 979-8-3503-6032-5. ISSN 2153-7003.
PDF
17MB |
Offizielle URL: https://dx.doi.org/10.1109/IGARSS53475.2024.10640797
Kurzfassung
This paper presents an investigation into the use of a random forest (RF) model for retrieving chlorophyll content from Sentinel-3 satellite data. We train various RF regression models on available datasets and introduce a classifier to identify instances where predictions may be inaccurate. This classifier aids in filtering out less reliable cases, enhancing the overall accuracy of our models at the expense of reducing the amount of processed data. Additionally, we optimize the hyperparameters of this hybrid model to improve its performance further. Our findings illustrate the effectiveness of combining regression models with a classifier in environmental remote sensing, offering a promising method for improving the accuracy of satellite-derived chlorophyll measurements.
elib-URL des Eintrags: | https://elib.dlr.de/206893/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Selective Filtering for Enhancing Chlorophyll Retrieval Accuracy from Sentinel-3 Data Using Random Forest Models | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||
Erschienen in: | 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IGARSS53475.2024.10640797 | ||||||||||||||||||||
Seitenbereich: | Seiten 5902-5905 | ||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||
ISSN: | 2153-7003 | ||||||||||||||||||||
ISBN: | 979-8-3503-6032-5 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Chlorophyll Retrieval, Selective Filtering, Random Forest Regression, Sentinel-3 | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2024 | ||||||||||||||||||||
Veranstaltungsort: | Athens, Greece | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 7 Juli 2024 | ||||||||||||||||||||
Veranstaltungsende: | 12 Juli 2024 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Atmosphärenprozessoren | ||||||||||||||||||||
Hinterlegt von: | Efremenko, Dr Dmitry | ||||||||||||||||||||
Hinterlegt am: | 14 Okt 2024 11:57 | ||||||||||||||||||||
Letzte Änderung: | 08 Nov 2024 14:03 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags