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ABSTRACT
This paper presents an investigation into the use of a random
forest (RF) model for retrieving chlorophyll content from
Sentinel-3 satellite data. We train various RF regression mod-
els on available datasets and introduce a classifier to identify
instances where predictions may be inaccurate. This classifier
aids in filtering out less reliable cases, enhancing the overall
accuracy of our models at the expense of reducing the amount
of processed data. Additionally, we optimize the hyperparam-
eters of this hybrid model to improve its performance further.
Our findings illustrate the effectiveness of combining regres-
sion models with a classifier in environmental remote sensing,
offering a promising method for improving the accuracy of
satellite-derived chlorophyll measurements.

Index Terms— chlorophyll retrieval, neural networks, se-
lective filtering, random forest regression, Sentinel-3

1. INTRODUCTION

Satellite-based remote sensing is a powerful tool for
monitoring environmental variables, offering a comprehen-
sive perspective on Earth’s vital parameters. Among these,
the Sentinel-3 mission stands out for its ability to capture
high-resolution multispectral imagery, providing a wealth
of information for diverse applications, including aquatic
ecosystem monitoring. In particular, the Sentinel-3 data can
be used for retrieval of water chlorophyll concentrations. The
concentration of chlorophyll-a is regarded as a crucial param-
eter in assessing water quality, given its significant role in
the eutrophication process [1, 2]. Eutrophication can result
in serious consequences for aquatic ecosystems, including an
escalation in hypoxia, fish mortality, and the emergence of
harmful algae blooms [3].

The chlorophyll in water causes the absorption peak near
440 nm and 670 nm, as well as the strong reflection peak at
around 550 nm. The chlorophyll content can be obtained us-
ing the optimal estimation method [4] that matches the spec-
tral measurements to the bio-optical forward model [5] pro-
viding the optical properties of the water containing chloro-
phyll. This approach may require the linearization of the
coupled atmosphere-ocean radiative transfer model equipped
with the corresponding bio-optical model [6]. An alternative
approach is referred to as the empirical approach and con-
sists of finding regression models between the radiances and
chlorophyll concentration. To improve the accuracy of such
models, several authors propose to combine radiances (or re-
flectances) from different bands to make an artificial parame-
ter that is strongly correlated with chlorophyll concentration.
For instance, in [7] the normalized difference chlorophyll in-
dex (NDCI) was proposed and its formulation includes com-
puting the normalized difference between reflectance values
at 708 nm and 665 nm, followed by normalization using the
sum of the reflectance values at these wavelengths. In the
Mediterranean Ocean Color 4 (MedOC4) models, the loga-
rithm of chlorophyll concentration is expressed as a fourth-
degree polynomial of maximum ratios of some bands (see
[8] and references therein). The polynomial coefficients are
found in the calibration procedure. This approach can be gen-
eralized by using artificial neural networks. In [9] a neu-
ral network was considered that takes as input different ra-
tios of bands. For their model, authors achieved the root-
mean-square error and unbiased percentage difference of 0.13
mg/m3, and 17.31%, respectively. The advantage of this ap-
proach is that we do not need the forward model, but rather an
extensive training dataset consisting of on-site measurements
of chlorophyll concentrations and corresponding sensor sig-
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nal onboard a satellite.
In this paper, our goal is to improve the accuracy of the

supervised learning models by detecting the cases (pixels)
where our random forest model is expected to exhibit subopti-
mal performance. A classifier is employed that discriminates
between ”reliable” and ”unreliable” pixels, and the random
forest model is then applied only for ’reliable’ pixels ensuring
a more robust and reliable assessment of water quality. Our
intention is to investigate the trade-off between the accuracy
of retrieval and the amount of pixels that are eligible for pro-
cessing according to the classifier.

2. DATA COLLECTION

The study region encompasses the Mediterranean Sea, ac-
knowledged as a mid-latitude basin predominantly charac-
terized by oligotrophic and ultra-oligotrophic conditions.
Our investigation scrutinized two primary datasets: in situ
chlorophyll-a concentrations and satellite data. The in-
situ measurements were derived from a dataset provided
by the Copernicus Marine Environmental Monitoring Service
(CMEMS). This dataset comprises a wealth of ocean bio-
optical information, in particular, chlorophyll-a concentration
Figure 1 provides a visual representation of the study area,
delineating the specific locations of in situ measurements.

In alignment with the in-situ data points from the CMEMS
dataset, we gathered the peak radiance values for each band
from the Ocean and Land Cover Instrument (OLCI) instru-
ment on the Sentinel-3 (COPERNICUS/S3/OLCI) satellite.
Access to these data was facilitated through Google Earth
Engine by specifying the acquisition time and location. In the
dataset, we include Sentinel-3 OLCI bands. The chlorophyll
range over the considered region is between 0 to 1.934 (mg
m3). In total, we have collected 11098 cases.

3. METHODOLOGY

Our methodology is illustrated in Figure 2. It includes a re-
gressor and a classifier to enhance the accuracy of chlorophyll
prediction from radiance data. Initially, we use radiance mea-
surements alongside ground truth data on chlorophyll concen-
trations to train a regression model. This regressor is designed
to establish a direct correlation between the input radiance
and the corresponding chlorophyll levels. We use the ran-
dom forest regressor that takes as input all bands of Sentinel
3 available in the dataset.

Then, we validate the trained regressor to assess its per-
formance and select cases where the regressor prediction has
an error exceeding a given threshold. In the next step, we
train a classifier, that pinpoints instances where the regressor
is prone to significant errors. We label these instances as ’un-
reliable’. Thus, the classifier acts as a filtering mechanism for
new data, segregating it into ’reliable’ and ’unreliable’ cate-
gories based on the likelihood of accurate predictions by the

Fig. 1: Location of the Study area and data points

regressor. For new data classified as ’reliable’, the regressor is
then applied to estimate the chlorophyll levels. By selectively
applying the regressor only to data classified as ’reliable’, we
expect to reduce the potential for large errors in our chloro-
phyll estimations, leading to more accurate and dependable
results.

4. RESULTS AND DISCUSSION

We apply the random forest regression model with a sec-
ondary classifier. The results are compared with those ob-
tained with NDCI and MedOC4 algorithms. Table 1 shows
the Root Mean Squared Error (RMSE), Coefficient of De-
termination (R2), Mean Bias Error (MBE), and Absolute
Percentage Difference (APD). NDCI characterized by a re-
spectable R2 of 0.7971, presents, however, a relatively higher
RMSE (0.0974) and APD of 83.6476%, indicating notice-
able errors. Similarly, the MedOC4 model, closely aligned
with NDCI, demonstrates a slightly reduced APD of 22.03%
with RMSE (0.1004). Notably, the RF model, while not sur-
passing the performance of NDCI, is also characterized by
competitive metrics.

Contrastingly, the RF model combined with a secondary
classifier, featuring a confidence level of 0.9 and a threshold
of 0.1, outshines all other approaches. It achieves the lowest
RMSE of 0.05993, the highest R² of 0.8868, and a negligible
Mean Bias Error (MBE) of 0.0005.

However, the application of the classifier inevitably re-
duces the number of cases to which the regressor is applied.
In this context, an essential parameter that characterizes the
performance of our approach, in addition to accuracy, is com-
pleteness, i.e. the proportion of cases that are deemed suit-
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Fig. 2: Schematic representation of the proposed approach:
after the regression model is trained, it is evaluated and the
classifier is trained to detect the cases when the model is ex-
pected to have an error exceeding a given threshold.

Table 1: Comparative analysis of random forest (RF) regres-
sion, RF with a secondary classifier, NDCI, and MedOC4 al-
gorithm

RMSE R2 MBE APD

RF+Classifier 0.05993 0.8868 0.0005 18.15
RF 0.0992 0.7893 0.0038 22.08
NDCI 0.0974 0.7971 0.0041 83.65
MedOC4 0.1004 0.6850 0.0043 22.03

able by the classifier for regression analysis. To evaluate our
model, we consider the error-completeness curve, which il-
lustrates the trade-off between accuracy and dataset coverage.
Note that the classifier assigns a probability (confidence) to a
pixel, that it belongs to a specific class. We may set a thresh-
old for confidence to adjust the curve, as shown in Figure 3a.
It visually demonstrates how adjustments of the confidence
level impact both the error rate and the proportion of data suit-
able for regression analysis. This curve helps us identify an
optimal balance between accuracy and completeness. For in-
stance, this figure shows that by setting the confidence level
at 0.9 and marking the results with RMSE larger than 0.03 as
unreliable we are able to maintain of about 80% of cases for
retrieval.

The concept behind utilizing a classifier in conjunction
with our regression model is to identify and flag problematic
cases where the regression model is anticipated to yield inac-
curate results. The root causes of these inaccuracies can vary.
They may be due to limitations of the regression model itself
(e.g. overfitting, underfitting, etc) or external factors, such as
high aerosol loading that can significantly interfere with the
signal received by the satellite sensors, leading to distorted or
obscured data.

Figure 3b shows the results derived from implementing a
pipeline that integrates a classifier with a random forest re-

(a) (b)

Fig. 3: (a) Completeness vs RMSE curve at the two different
confidence level of random forest classifier, and (b) Predicted
vs. true chlorophyll concentration values from the testing
dataset. Points are color-coded to differentiate cases classi-
fied as ’reliable’ or ’unreliable’ based on the expected error
level

gressor. The classifier tends to exclude those instances in
which the model is likely to incur large errors. This selective
process is crucial in maintaining the overall precision of our
predictions, as it effectively identifies and sets aside the more
problematic cases that could potentially skew the accuracy of
the random forest regressor.

Fig. 4: Chlorophyll Retrieval heat map generated using RFRC
algorithm, Top Panel: Mediterranean Sea around Greece.
Bottom Panel: Bay of Bengal, Sundarban Delta region. Left
Panel: Without filtering, Right Panel: After filtering out non-
reliable cases

Finally, we demonstrate the algorithm by applying it to
the region in the Mediterranean Sea near Greece and in the
Sundarban delta region of Bangladesh and India, as shown
in Figure 4. The model’s results generally exhibit a spatial
pattern similar to those found by other algorithms available
in the literature. The distinct edge in the middle of the fig-
ure is likely due to the sensor’s varying measurement times.
Employing a classifier and filtering out unreliable cases de-



creases the overall completeness of the image. Additionally,
in this specific instance, the classifier tends to label cases with
relatively high chlorophyll values as unreliable. This problem
can be eliminated by including in the training dataset more
cases with high values of chlorophyll concentration.

5. CONCLUSION

In this paper, we have considered a methodology to elevate
the precision of chlorophyll retrieval from Sentinel-3 satellite
data. It is based on a regression model with a secondary clas-
sifier, designed to identify and exclude instances where the
regression model exhibits significant errors.

In the comparative analysis, our methodology, featuring
a secondary classifier, emerges as the superior approach, ev-
idenced by a notable reduction in RMSE and a substantial
improvement in the coefficient of determination. Despite this
success, the introduction of the classifier necessitates a crucial
trade-off between accuracy and completeness. Our analysis
of the error-vs-completeness curve illuminates the impact of
adjusting filtering criteria on both the accuracy of predictions
and the coverage of the dataset.

In summary, the proposed methodology combining re-
gression models with selective filtering through a classifier
offers a promising tool for enhancing the accuracy of satellite-
derived chlorophyll measurements. Further research and re-
finement of this approach could contribute significantly to the
field of environmental remote sensing.
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