Ultsch, Johannes und Pfeiffer, Andreas und Ruggaber, Julian und Kamp, Tobias und Brembeck, Jonathan und Tobolar, Jakub (2024) Reinforcement Learning for Semi-Active Vertical Dynamics Control with Real-World Tests. Applied Sciences, 14 (16), Seite 7066. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/app14167066. ISSN 2076-3417.
PDF
- Verlagsversion (veröffentlichte Fassung)
7MB |
Offizielle URL: https://www.mdpi.com/2076-3417/14/16/7066
Kurzfassung
In vertical vehicle dynamics control, semi-active dampers are used to enhance ride comfort and road-holding with only minor additional energy expenses. However, a complex control problem arises from the combined effects of (1) the constrained semi-active damper characteristic, (2) the opposing control objectives of improving ride comfort and road-holding, and (3) the additionally coupled vertical dynamic system. This work presents the application of Reinforcement Learning to the vertical dynamics control problem of a real street vehicle to address these issues. We discuss the entire Reinforcement Learning-based controller design process, which started with deriving a sufficiently accurate training model representing the vehicle behavior. The obtained model was then used to train a Reinforcement Learning agent, which offered improved vehicle ride qualities. After that, we verified the trained agent in a full-vehicle simulation setup before the agent was deployed in the real vehicle. Quantitative and qualitative real-world tests highlight the increased performance of the trained agent in comparison to a benchmark controller. Tests on a real-world four-post test rig showed that the trained RL-based controller was able to outperform an offline-optimized benchmark controller on road-like excitations, improving the comfort criterion by about 2.5% and the road-holding criterion by about 2.0% on average.
elib-URL des Eintrags: | https://elib.dlr.de/206845/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Reinforcement Learning for Semi-Active Vertical Dynamics Control with Real-World Tests | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 12 August 2024 | ||||||||||||||||||||||||||||
Erschienen in: | Applied Sciences | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 14 | ||||||||||||||||||||||||||||
DOI: | 10.3390/app14167066 | ||||||||||||||||||||||||||||
Seitenbereich: | Seite 7066 | ||||||||||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||||||
Name der Reihe: | Special Issue: Trends and Prospects in Vehicle System Dynamics | ||||||||||||||||||||||||||||
ISSN: | 2076-3417 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | reinforcement learning; vertical dynamics control; semi-active damping; FMI; Modelica | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Systemdynamik und Regelungstechnik > Fahrzeug-Systemdynamik | ||||||||||||||||||||||||||||
Hinterlegt von: | Ultsch, Johannes | ||||||||||||||||||||||||||||
Hinterlegt am: | 07 Okt 2024 17:44 | ||||||||||||||||||||||||||||
Letzte Änderung: | 10 Okt 2024 13:15 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags