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Abstract: In vertical vehicle dynamics control, semi-active dampers are used to enhance ride comfort
and road-holding with only minor additional energy expenses. However, a complex control problem
arises from the combined effects of (1) the constrained semi-active damper characteristic, (2) the
opposing control objectives of improving ride comfort and road-holding, and (3) the additionally
coupled vertical dynamic system. This work presents the application of Reinforcement Learning
to the vertical dynamics control problem of a real street vehicle to address these issues. We discuss
the entire Reinforcement Learning-based controller design process, which started with deriving a
sufficiently accurate training model representing the vehicle behavior. The obtained model was
then used to train a Reinforcement Learning agent, which offered improved vehicle ride qualities.
After that, we verified the trained agent in a full-vehicle simulation setup before the agent was
deployed in the real vehicle. Quantitative and qualitative real-world tests highlight the increased
performance of the trained agent in comparison to a benchmark controller. Tests on a real-world four-
post test rig showed that the trained RL-based controller was able to outperform an offline-optimized
benchmark controller on road-like excitations, improving the comfort criterion by about 2.5% and the
road-holding criterion by about 2.0% on average.

Keywords: reinforcement learning; vertical dynamics control; semi-active damping; FMI; Modelica

1. Introduction

Vehicle vertical dynamics control aims at improving ride comfort as well as maxi-
mizing ride safety by improving road-holding. Given the contrasting nature of these two
objectives, at a certain point enhancing one metric yields a corresponding deterioration
in the other. In contrast to a pure passive suspension system setup, semi-active and ac-
tive suspension systems are able to achieve a better tradeoff between ride comfort and
road-holding [1]. While the performance of fully active systems is superior to that of
semi-active systems, the energy consumption of semi-active systems is significantly lower.
Since semi-active suspension systems provide a good tradeoff between performance and
energy consumption and are widely used in production vehicles, this work focused on the
control of a road vehicle equipped with a semi-active suspension setup.

Several aspects of semi-active suspension systems pose a major challenge to the de-
velopment of suitable control algorithms for such setups. On the one hand, the limited
actuation range, the nonlinear damper characteristics as well as a complex input to force
dynamics result in a nonlinear system. On top of that, the usage of rubber bearings in
the suspension system and the elastic bearing of the engine mass affects the dynamic
behavior of the overall dynamic behavior. On the other hand, the simultaneous appli-
cation of the damper force to both the chassis mass and the wheel mass, the additional
coupling via the suspension spring, and the unknown road excitation further complicate
the control problem.
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Despite the complex system dynamics, many vertical dynamics controllers are based
on linear two-mass oscillators and incorporate other simplifications. The widely used
skyhook controller (SH) introduced in [1] assumes a virtual control force acting on the
vehicle body and neglects the induced force acting on the wheel. The groundhook control
law (GH) introduced in [2] extends this concept by a virtual force acting on the wheel to
control wheel oscillations. In ref. [3], the authors compare several semi-active suspension
control methods on a linear two-mass oscillator vehicle model. Even though the incorpora-
tion of a first-order input dynamics results in a nonlinear quarter-vehicle model (QVM),
a linear damper characteristic is assumed. In ref. [4], a simplified damper model is used
during the controller design process and a more sophisticated damper model is used during
simulative assessment.

In contrast to analytically derived control laws, data-driven methods such as Deep
Reinforcement Learning (DRL) have been increasingly used for solving complex real-world
control tasks in recent years, e.g., for quadruped robots [5]. The increasing popularity of
applying Reinforcement Learning (RL) methods to control problems is based on multiple
advantages: Multi-physical simulation models can be directly used within the training
process. Many analytically derived control laws rely on specific simplified model structures,
e.g., linear models or state space models. Moreover, deriving analytical control laws is
often a tedious and error-prone task that requires expert knowledge. RL methods are rather
generic and can solve a wide range of control problems based on a repeated interaction
with the system or a simulation model of the system. In contrast to first-generation RL
algorithms, the increased popularity of RL is based on the use of artificial neural networks
(ANN) as function approximators within DRL algorithms. The use of ANNs leveraged
the performance of RL and enabled the applicability of RL algorithms to a wide range of
sequential decision-making problems across different domains and research fields [6].

In this work, we applied RL to semi-active suspension systems for vertical vehicle
dynamics control in the German Aerospace Center’s (DLR’s) research vehicle AI For Mo-
bility (AFM) [7]. Since the training in simulation is fast, scalable, and safe, our approach
relies on a simulation-based training strategy. We addressed the entire Reinforcement
Learning design process for the vertical dynamics control of semi-active damper systems.
This included the modeling of the vehicle as an assembly of QVMs. To ensure sufficiently
accurate training models, the model structure and the model parameters were optimized
using real-world measurement data. The training process covered different road excitations
as well as the comparison of different reward function designs. After the deployment on
an embedded rapid control prototyping system, the RL-based controller was benchmarked
against a combined SH/GH controller. The parameters of the SH/GH controller were ob-
tained in an offline nonlinear optimization setup to assure a fair comparison. Additionally,
evaluation on a real-world four-post test rig ensured reproduceable real-world test results.
The real-world tests showed that the RL agent was able to outperform an offline optimized
benchmark controller in the comfort criterion in seven out of nine road-like excitations and
improved the road-holding criterion in all tested road-like excitations.

1.1. Related Work

An early application of RL to the vehicle suspension control is documented in [8]. In
this contribution, the authors used a stochastic continuous action RL automata algorithm
to obtain the parameters of a simple linear control law. The training was performed in a
real-world setting on a four-post test rig with the aim of minimizing the root mean square
(RMS) of the chassis acceleration. In the approach presented in the paper, the RMS of the
chassis acceleration could be minimized in comparison with a fixed damper characteristic.
In contrast to our approach, the policy utilized in the abovementioned paper was a pure
linear control law and the RL algorithm could only adjust three parameters per vehicle
corner. We utilized an ANN as a policy that enabled the RL algorithm to obtain a much
more sophisticated control law.



Appl. Sci. 2024, 14, 7066 3 of 34

In ref. [9], the authors applied a Batch RL algorithm to the semi-active damping of
a vehicle. In their contribution, the RL algorithm was trained in a simulation on a QVM.
The applied RL algorithm used tree-based regression methods as function approximators.
Additionally, the authors selected a discrete action space, i.e., the RL algorithm could
only choose between minimum and maximum damping. The goal of the approach was
to maximize ride comfort. To achieve this, the authors compared three different reward
functions: one was based on the vertical chassis acceleration, one was based on the vertical
chassis velocity, and one was based on the vertical chassis displacement. The authors
found that the velocity-based reward function performed best. Simulative assessments
showed that the trained controller was able to outperform their benchmark controller, a
combined SH- and acceleration-driven damping controller (SH-ADD controller, c.f. [4]), in
low frequencies, but performed slightly worse on higher frequencies. In contrast to [9], we
used a deep RL algorithm and utilized a more sophisticated training model. Additionally,
we validated our trained controller in real-world tests, which was not performed in [9].

An explicit model predictive control (MPC) approach was presented in [10]. In this
contribution, the authors designed an MPC for a nonlinear QVM incorporating nonlinear
axle kinematics, damper friction, and nonlinear damper characteristics. The MPC was
then solved offline for various sampled points from the state space and the result was
stored. After that, an ANN was trained such that a damper input could be obtained by
evaluating the ANN with measurement inputs. Experiments on a quarter vehicle test rig
and in a full vehicle simulation showed the benefit of the proposed approach compared
to a combined SH/GH controller. In general, the explicit MPC approach was tractable as
long as the state space was small. The computational effort grew exponentially with the
number of states and, thus, became computationally intractable very fast. Additionally,
it was not straightforward to generate the sample pattern for the state space. On the one
hand, the samples should cover all regions that might be encountered during operation.
On the other hand, oversampling increases the computational cost and, thus, should be
kept at a minimum. In the RL approach presented in the contribution at hand, no sample
grid had to be selected manually.

The authors of [11] proposed a sequential learning algorithm to iteratively optimize
the parameters of a predefined policy. In contrast to standard DRL, the proposed algorithm
used a policy that is parametrized as a quadratic function of all available measurements.
The authors showed that their approach was superior to a linearized variant of the skyhook
control algorithm in real-world tests.

In addition to the non-standard DRL approaches to tackle the vertical dynamics control
problem via the learning-based approaches listed above, many applications of standard
DRL algorithms can be found in the literature. In refs. [12,13], the deep deterministic policy
gradient (DDPG) RL algorithm was applied to the vertical dynamics control of a QVM.
Both used a linear QVM to train the controller and assess the trained agent in simulation.

The contributions of [14,15] applied the proximal policy optimization (PPO) DRL
algorithm to vehicle vertical dynamics control. Both contributions trained the agent on a
linear QVM that was extended by a friction term resulting in a nonlinear model. In ref. [15],
the authors trained the agent on a single road bump excitation, while it seems in [14] the
agent was trained on artificial road excitations. The work of [14] compared the trained
agent in a simulation against a passive- and a fuzzy-based control strategy and was able
to show some improvements for different road types and vehicle loading conditions. A
simulative evaluation in [15] was conducted on a bump excitation and showed that the PPO
agent was able to minimize the momentum of the unsprung wheel mass but concurrently
increased the momentum of the body mass.

In ref. [16], the ability of RL to handle an uncertain delay of the input was investigated.
The authors applied the twin delayed DDPG (TD3) algorithm to a linear QVM extended
by an input delay. Even though an input delay violates the Markov assumption that is
assumed in the theoretical analysis of RL algorithms, the authors were able to show an
advantage of their agent compared to a pure passive suspension setup in a simulative
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assessment. Compared to a DDPG agent, the TD3 agent proposed in the contribution
outperformed the DDPG agent in some simulative scenarios.

The comparative study in [17] benchmarked different DRL algorithms with different
state-of-the-art vertical dynamics controllers. To train the agents, the authors used a
nonlinear two-mass oscillator with the damping coefficient as input and a first-order
actuator dynamics. The authors found that the use of trust region policy optimization
(TRPO) with generalized advantage estimation (GAE) yielded a close-to-optimal policy and
was advantageous in comparison with other RL algorithms. The simulative assessment
on the QVM was supported by further investigation of the selected agent on a nonlinear
full-vehicle model.

In ref. [18], different DRL algorithms were trained on a nonlinear full-vehicle model
excited by synthetical road profiles. An evaluation of different DRL algorithms showed
that the soft actor–critic (SAC) algorithm performed best in their setting. The authors
proposed a dual approach in which one agent is trained to cope with the road excitation
according to [19] and another agent is trained for impulse excitations. Additionally, an
impulse detector algorithm was developed, based on which one of the two agents was
selected for application. The proposed approach was evaluated in simulation and showed
an improvement in the comfort criterion compared to an SH controller, two different
MPC versions, and a passive setup. Additionally, the RL-based agent that was trained for
handling the road excitations was tested on a real test circuit. In these real-world tests, the
SAC agent was able to outperform the SH controller and a passive setup on the RMS of
the vertical acceleration. In our work, we describe the derivation of the training model
in great detail. Additionally, instead of choosing to test the agent in a real-road setting,
we evaluated our trained agent on a four-post test rig. This way, we were able to not
only measure the chassis vertical acceleration as a basis for the comfort criterion but were
also able to measure the wheel loads and could derive the road-holding criterion from
these measurements.

1.2. Contribution and Overview of This Work

In this work, we propose one way of applying DRL to the semi-active suspension
control of a real street vehicle. We describe the entire process of the vertical dynamics
RL controller design process, which is presented in more detail in Section 2. This process
started with taking measurements of the whole vehicle on a four-post test rig and the
measurements of individual components. Based on these measurements, we derived
component models and optimized a QVM model that was later used for training. The
modeling, identification, and evaluation are presented in Section 3. Thereafter, Section 4
describes the whole controller training process. The verification of the controller trained
on QVMs in a full-vehicle model is discussed in Section 5. Finally, Section 6 presents the
results of conducting real-world tests.

As this work is partially based on the results of a funded project, parts of the contribu-
tion were published as a short summary in the German final report [20]. On top of that, the
contributions of the paper at hand can be summarized as follows:

1. We address the complete process of applying DRL to the semi-active suspension
control problem in great detail. This process includes taking measurements, deriving
a training model, training the controller, verifying the controller in simulation, and
conducting real-world tests.

2. In our approach, we propose to optimize the QVM model structure as well as the
QVM parameters in order to obtain an accurate training model. Additionally, we
show that the optimized model structure is able to approximate the real measurement
data better than a standard two-mass QVM.

3. We propose to train the controller on different QVMs, which represent the different
corners of the vehicle to avoid overfitting. Additionally, we train on different excitation
types to make the resulting controllers more robust. The whole training process,
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including the design of the reward function and the selection of the trained agent, is
presented in great detail.

4. We evaluate the resulting controller in real-world tests on a four-post test rig. The
selected RL agent was able to outperform an offline-optimized benchmark controller
on road-like excitations, improving the comfort criterion by about 2.5% and the
road-holding criterion by about 2.0% on average.

2. The Vertical Dynamics RL Controller Design Process

There are two main options for training an RL controller: training in simulation or
training directly on the real plant, i.e., the test vehicle. The benefit of training in the
real world is that no simulation model is needed and that no model–reality mismatch
(sim-to-real gap, see [21]) can occur. Nevertheless, ensuring safety can pose a challenge.
Additionally, the training is restricted to real time. In contrast to that, training in simulation
is fast, scalable, and safe. Simulation models often can be simulated faster than real
time and the training can be parallelized on high-performance computing systems, which
provides an additional speed-up. Because of these advantages, training in simulation is
often preferred. In some applications, the agent trained in simulation is afterwards trained
on the real system to overcome the sim-to-real gap.

In order to train a vertical dynamics controller directly on the vehicle, it is necessary
to excite the vehicle with defined vertical excitations. Since this is not possible in normal
road traffic, a so-called four-post test rig, as depicted in Figure 1, is required for real-world
training. However, the experiments on the four-post test rig and equipping the vehicle
on the test rig present a considerable effort. Starting directly with real-world training is
unfavorable for the vertical dynamics control problem, since the training process may have
to be repeated several times to find a robust training setup. Due to these limitations, we
chose to train the controller in simulation. To narrow the sim-to-real gap, the training
model structure as well as the parametrization were optimized with respect to extensive
measurement data.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 34 
 

show that the optimized model structure is able to approximate the real 
measurement data better than a standard two-mass QVM. 

3. We propose to train the controller on different QVMs, which represent the different 
corners of the vehicle to avoid overfitting. Additionally, we train on different 
excitation types to make the resulting controllers more robust. The whole training 
process, including the design of the reward function and the selection of the trained 
agent, is presented in great detail. 

4. We evaluate the resulting controller in real-world tests on a four-post test rig. The 
selected RL agent was able to outperform an offline-optimized benchmark controller 
on road-like excitations, improving the comfort criterion by about 2.5%  and the 
road-holding criterion by about 2.0% on average. 

2. The Vertical Dynamics RL Controller Design Process 
There are two main options for training an RL controller: training in simulation or 

training directly on the real plant, i.e., the test vehicle. The benefit of training in the real 
world is that no simulation model is needed and that no model–reality mismatch (sim-to-
real gap, see [21]) can occur. Nevertheless, ensuring safety can pose a challenge. 
Additionally, the training is restricted to real time. In contrast to that, training in 
simulation is fast, scalable, and safe. Simulation models often can be simulated faster than 
real time and the training can be parallelized on high-performance computing systems, 
which provides an additional speed-up. Because of these advantages, training in 
simulation is often preferred. In some applications, the agent trained in simulation is 
afterwards trained on the real system to overcome the sim-to-real gap. 

In order to train a vertical dynamics controller directly on the vehicle, it is necessary 
to excite the vehicle with defined vertical excitations. Since this is not possible in normal 
road traffic, a so-called four-post test rig, as depicted in Figure 1, is required for real-world 
training. However, the experiments on the four-post test rig and equipping the vehicle on 
the test rig present a considerable effort. Starting directly with real-world training is 
unfavorable for the vertical dynamics control problem, since the training process may 
have to be repeated several times to find a robust training setup. Due to these limitations, 
we chose to train the controller in simulation. To narrow the sim-to-real gap, the training 
model structure as well as the parametrization were optimized with respect to extensive 
measurement data. 

 
Figure 1. The DLR’s test vehicle AFM on a four-post test rig (adopted from [20]). Figure 1. The DLR’s test vehicle AFM on a four-post test rig (adopted from [20]).

The controllers were developed for and tested on the AI For Mobility (AFM) research
platform [7], a test vehicle at the German Aerospace Center that enables the investigation
of AI-based control methods. A hybrid production vehicle served as a test platform. To pro-
vide the data required for AI methods, the vehicle was equipped with an extensive range of
sensors that could record numerous quantities. A complete by-wire control system enabled
automated driving and the reproducible testing of controllers. Additionally, a rapid control
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prototyping (RCP) system allowed control algorithms to be tested directly on the AFM.
Furthermore, the AFM was equipped with a custom-made semi-active damper system,
which is described in more detail in Section 3.2. Despite the modifications, the vehicle was
approved for use on public roads and fulfilled the driving dynamics characteristics of a
normal production vehicle.

In Figure 2, the RL-based controller design process for vertical dynamics control
applied in this work is depicted. The process applied in this work started by generating
measurement data for the whole vehicle. Additional measurement data were collected for
the semi-active hydraulic damper and additional components. In a second step, component
models and several different QVM structures were generated. The obtained measurement
data were then used to parametrize the models through optimization. Since the damper
was the central component that converted the control signal into forces, special attention
was paid to the measurement and modeling of the damper. Deriving an accurate training
model is a crucial task for the RL training process. Since the controller adapts its behavior
from interaction with the simulation model, the performance of the resulting controller
in the real-world application relies on the accuracy of the model. For the modeling, we
used the multi-domain modeling language Modelica [22] together with the integrated
development environment Dymola.
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The most accurate QVM structures were then selected and exported as functional
mock-up units (FMU) [23]. The functional mock-up interface (FMI) [23] is a standardized
interface that allows the exchange of simulation models between different simulation
frameworks as FMU. Since most RL algorithm libraries support a Python interface, the
exported model FMU was integrated into a Python-based RL training framework. The
whole training process consisting of reward function design, training, and evaluation was
then executed inside this Python-based framework. After training a set of RL agents, the
best agents, regarding specific metrics, were selected for further evaluation and deployment.

These agents were then exported as C-Code and integrated into both the AFM’s RCP
and a full-vehicle model for verification. In a last step, the obtained RL agents were tested
quantitatively on a four-post test rig and qualitatively in a driving test in the real world. To



Appl. Sci. 2024, 14, 7066 7 of 34

ensure a fair comparison in the quantitative tests, we implemented an optimized combined
SH/GH reference controller as a benchmark.

In contrast to the model-based controller design process discussed in [24], the RL-
based design process allowed the direct integration of the simulation model into the RL
training process. Aside from ensuring a reasonably quick simulation process and adhering
to the Markov property, no specific requirements were imposed on the training model.

3. Modeling and Parameter Optimization of the Training Model

Training an RL controller in simulation requires an accurate simulation model of the
system. Depending on the development stage, it is advantageous to utilize vehicle models
of various levels of detail for the training of the controller and its validation. The training
of the controller agent starts from scratch as the agent has no a priori knowledge of the
system. At this stage, using a QVM plant with fewer states helps to make fast progress and
to obtain an agent in an acceptable time.

During the training, the RL algorithm interacted with the simulation model and
adapted the policy based on the observed behavior of the simulation model used for the
training. A controller trained in simulation will only exhibit the same performance in
reality if the training model approximates the real-world system sufficiently accurately.
We, therefore, paid particular attention to the modeling and parameterization of the train-
ing model.

In Section 3.1, the selection of the training model structure is discussed. Since the
semi-active damper was the central element for the controller input, Section 3.2 deals
with the modeling of the damper in great detail. The models used for the training of the
controller are then presented in Section 3.3.

3.1. Selection of the Training Model Structure

The model used for the training of the RL-based controller should fulfill two ob-
jectives: First, it should represent the real-world dynamics of the plant reasonably well.
Second, a fast execution time of the model is desirable. This can reduce the time for the
controller training significantly. Usually, the training model realizes a tradeoff between
these two objectives.

For the vertical dynamics control, several types of vehicle models can be considered for
training. The most accurate model types are full-vehicle models. These types of models can
usually represent the horizontal vehicle dynamics, the induced pitch, and roll dynamics, as
well as the vertical dynamics induced by road excitations. In contrast to that, half-vehicle
models cover either pitch or roll dynamics and also represent vertical dynamics induced by
road excitation. QVMs are only able to represent road-induced dynamics.

In this work, the aim of the RL controller was to compensate for the vertical road-
induced disturbances. Since we assumed that the pitch and roll dynamics were handled
by feed-forward control, we selected the QVM as the training model. The QVM model
structure was able to represent the desired dynamics and had favorable simulation com-
plexity. In order to obtain a sufficiently accurate simulation model, we used an extended
model structure instead of a linear QVM. We considered complex valve behavior, nonlinear
kinematics, and elastic bearings in the extended model structure.

3.2. Damper Identification and Modeling

The test vehicle was equipped with hydraulic triple-tube dampers with an external
valve. The damper characteristics could be changed by the positioning of the valve, which
was controlled by the magnetic field induced by a current flow through the valve coil. A
low-level current controller ensured the tracking of the current setpoint. In this work, we
selected the current setpoint of the low-level current controller as the input variable.

Since the front axle of the vehicle was constructed as a McPherson strut and the rear
axle was constructed as an integral link suspension, different damper configurations were
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used for the front axle and the rear axle. This implied different characteristics at the front
and rear axles and different model parametrizations were needed.

In a dedicated damper test rig, several measurements were conducted on one damper
from the front axle and one from the rear axle. The damper test rig could apply defined
velocity profiles to the damper and measure the induced force by the damper. The following
measurements were conducted to obtain the whole damper characteristics and parameters:
First of all, a standardized identification process with different constant currents was
conducted to obtain the force–velocity map, which is depicted in Figure 3.
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Figure 3. Damper force–velocity characteristics for different damper currents for AFM’s (a) front axle
and (b) rear axle (compare [20]).

Figure 3a,b depict the velocity–force maps of the front and rear axle dampers, re-
spectively. The damper characteristics of the front and rear dampers differed significantly.
The atypical characteristics of the front axle damper resulted from the conversion of the
uncontrolled standard damper to a semi-active one. A quasi-static profile with different
breakpoints was applied to measure the friction force as well as the air spring stiffness ki
with i ∈ {f, r} for the front axle and the rear axle, respectively. This identification resulted
in kf = 895 N/m and kr = 680 N/m.

To identify the input-to-force dynamics of the dampers, different steps in the current
setpoints with constant damper velocity were applied and the induced damper forces were
recorded. With this test, the input-to-force dynamics could be identified, which included the
dynamics of the low-level current controller, the valve dynamics, and additional dynamics
within the damper. The results of these tests for the front axle damper are depicted in
Figure 4a for a rising current step and in Figure 4b for a falling current step. In this
measurement setup, we were only interested in the dynamical behavior of the damper.
Thus, the depicted measurement data as well as the input signal were scaled between
0 and 1.

As can be seen in a comparison of Figures 4a and 4b, the dynamical behavior dif-
fered between a rising current step and a falling current step. The dynamics were more
responsive for a falling current step. However, only small differences in the dynamical
behavior between rebound and compression could be determined. Therefore, our model
distinguished between positive and negative current steps but did not represent rebound
and compression in the input-to-force dynamics.
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Based on this measurement data, the input-to-force dynamics were approximated by
a first-order transfer function with an additional delay:

G(s) =
1

1 + Ti,j s
·e−s di,j (1)

with i ∈ {f, r} for front axle and rear axle and j ∈ {falling, rising}.
The transfer function parameters were obtained through optimization using

MATLAB’s tfest function in MATLAB 2022b. We performed a grid search over the de-
lay time di,j with a spacing of 0.5 ms. Thus, we obtained a time constant Ti,j for each grid
point di,j by running the optimization. The parameters di,j and Ti,j that resulted in the
lowest cost function values and were considered plausible were selected. The results of the
parameter optimization are listed in Table 1.

Table 1. Optimized damper input-to-force transfer function parameters.

Front Axle Rear Axle
Tf,rising 3.915 ms Tr,rising 9.654 ms
df,rising 4.5 ms dr,rising 4.0 ms

Tf,falling * 2.615 ms Tr,falling 3.459 ms
df,falling * 1.5 ms dr,falling 1.5 ms

* Second best parameter option selected after visual inspection.

The measured force–velocity map depicted in Figure 3 and the estimated parameters
from Table 1 were used to parametrize a slightly modified version of the force map-
based damper model presented in [25]. In contrast to [25], we modified the input-to-force
dynamics model to match the falling and rising dynamics identified above, whereas [25]
differentiated between damper compression and damper rebound movement. Additionally,
we included a simple friction model in the damper model, whose friction parameter was
identified by the optimization described in the next section.

3.3. Quarter-Vehicle Modeling

The damper model developed in Section 3.2 as well as additional measurements of the
full vehicle on the four-post test rig (see Figure 1) built the basis for deriving the training
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model. This section describes the derivation of the QVM structures, the optimization-based
parametrization, and the evaluation of the training models.

The four-post test rig was used to generate an extensive vehicle motion dataset subject
to vertical excitations. In contrast to measuring while driving on a real road, the vehicle
can be excited with predefined vertical excitations. Using the four-post test rig also yielded
the advantage that additional measurements, such as the dynamic wheel loads, were
available. Moreover, the measurements were reproducible and were not affected by external
environmental factors, such as the weather.

The vehicle was excited with three different types of sine sweeps to cover a wide range
of frequencies: sine sweeps with linear increasing frequency from 0.5 Hz to 5 Hz, from
1 Hz to 20 Hz, and an exponentially increasing frequency sweep from 1 Hz to 30 Hz. Each
frequency range was applied with different zero-crossing velocities of 50 mm/s, 100 mm/s,
150 mm/s, 200 mm/s, and 250 mm/s. Additionally, each sweep excitation was performed
with different constant damper currents of 0.4 A, 0.6 A, 0.8 A, 1.0A, and 1.6 A. Since the
main focus of the training model was to approximate the vehicle’s vertical dynamics and
not the pitch or roll motion of the vehicle, only synchronous post excitations were selected
for the modeling process. We used the following sensor signals for the optimization-based
parametrization of the vehicle: position of each post, dynamic wheel load of each wheel,
acceleration of each wheel carrier, and acceleration of the chassis at the front right, front
left, and rear left sides of the vehicle. The chassis acceleration on the rear right side was not
included in the standard sensor setup on the four-post test rig and, thus, not recorded.

Different quarter-vehicle model structures were considered during the modeling
process to synthesize an accurate model of the vehicle (see also [20] and Table 2). All QVM
structures shared the following elements: a linear spring/damper element as approximation
of the tire vertical dynamics, the damper model from Section 3.2, and two mass elements
for both the wheel carrier and the body, respectively. Apart from these shared elements,
the QVM structures differed in the elements listed in Table 2.

Table 2. Properties of the different QVM model structures considered for comparison.

QVM Structure Name Nonlinear Spring/Damper
Transmission

Topmount Bushing as Linear
Spring/Damper Element

Engine Mass with Linear
Spring/Damper Bearing

Simple QVM ✗ ✗ ✗

Transmission QVM ✓ ✗ ✗

Topmount QVM ✓ ✓ ✗

Engine QVM ✓ ✗ ✓

Topmount engine QVM ✓ ✓ ✓

Both the vehicle spring and damper exhibited slightly nonlinear kinematics with
respect to the vertical deflection between the body and wheel. This implies that a vertical
deflection between the body and wheel lbw resulted in a nonlinear deflection at the spring
ls or damper ld. In the model variants, which included a nonlinear spring or damper
transmission, the transmission ratio was defined as

ij =
∂lj

∂lbw
(2)

with j ∈ {s, d}. We assumed with respect to lbw linear varying transmission ratio

ij = ia,j + ib,j lbw, (3)

which yielded

lj = ia,j lbw +
1
2

ib,jl2
bw + lbw,0. (4)
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All model variants from Table 2, even the more complex ones, are simplifications of the
real-world system. Therefore, selecting the model’s parameters as free parameters for the
optimization-based parameter estimation offered the possibility to compensate for model
mismatches. The optimization algorithm can achieve this by altering the physical parame-
ters of the QVMs to match the measured real-world dynamics. Limiting the parameters
within specific appropriate ranges by means of constraints prevented the optimization of
non-physical solutions. Since it was not clear which excitations were best suited for the
parameter optimization process, different subsets were used.

In the following, we formalized the approach to identify the parameters of different
model structures. We assumed to have nc > 0 measured excitation scenarios with input
vectors ui (in our case, post position and damper current) and the corresponding output
vectors yref,i ∈ Rny (i = 1, . . . , nc): in our case, the dynamic wheel load, the vertical wheel
acceleration, and the vertical vehicle body acceleration. The time duration of each scenario
is represented by Ti. For each model type m = 1, . . . , nM (nM > 0), we could simulate
model outputs ym ∈ Rny depending on a vector of model parameters pm, the input
signals ui, and the time t. We split the components of the parameter vector pm into two
groups, namely, pm,k and p̂m,k (k = 1, . . . , nSm). Here, nSm is the positive number of different
parameter splits for the model m. The first part of the split represents the free parameters
to be identified by optimization; the second part collects the parameters that have directly
assigned values from other sources.

For a model m with a parameter split k, we select a non-empty index subset I ⊂ Ic :=
{1, . . . , nc} to define which set of scenarios is used for the identification of parameters pm,k.
The following optimization problem focuses on the minimization of the time domain error
between measured signals and simulated ones:

min
pm,k ∈Bm,k

∑
i ∈ I

ny

∑
j=1

wi,j

Ti∫
0

(
ym

j

(
pm,k, p̂m,k, ui(t), t

)
− yref,i

j (t)
)2

dt. (5)

The vector of free parameters pm,k is constrained by a box Bm,k :=
{

pm,k
∣∣∣pm,k ≤ pm,k ≤ pm,k

}
for fixed lower limits pm,k and upper limits pm,k. The parameter subset p̂m,k is kept con-
stant. The deviations between model outputs and measured outputs are summed up using
positive weights wi,j

(
i = 1, . . . , nc; j = 1, . . . , ny

)
to reflect the different scaling of physical

variables. The numerical solutions of each optimization problem are named pm,k
I .

In our approach, we selected a few parameter splits and some scenario subsets for
the five models in Table 2. We selected all the parameters that were not measurable as free
parameters within the optimization. In contrast to that, we kept all the parameters constant
that were either measurable with a high certainty or resulted from previous investigations,
e.g., the damper parameters obtained in Section 3.2. Measured parameters with a low
certainty were kept constant in one of the first splits and selected as free parameters for the
optimization in other splits.

Since a large scenario subset means simulating the model many times with different
input excitations in each evaluation of the optimization cost function, it was important
to select only the most relevant excitations for the parameter identification. In our ap-
plication, the sine sweeps showed to have the most information included. Thus, these
excitations were preferred to define the optimization problems. We used the Optimization
Library [26] and additionally extensive scripting in Dymola, an integrated development en-
vironment for Modelica, to set up and solve the problems automatically. The computations
were executed on an in-house computing cluster using the parallelization features of the
Optimization Library.

After solving the optimization problems, we finally obtained a list of identified pa-
rameter sets (pm,k

I , p̂m,k) with a split k for the models m and excitation scenario subsets I. To
evaluate each of the solutions, we computed separate error metrics for each of the compo-
nents ym

j for the whole scenario set Ic. This meant simulating the models parametrized by
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the identified parameters with all the test scenarios. Based on qualitative and quantitative
comparisons of these results, we selected the best model structure with its identified pa-
rameters (cf. Table A1 in the Appendix A). Since the body acceleration was only measured
at the front left (FL), front right (FR), and the rear left (RL) but not at the rear right (RR)
corner of the vehicle, we performed the optimizations only for the three vehicle corners
where the full measurement data were available.

The optimal model structures revealed by the optimization were the “Engine QVM”
variant for FL and FR and the “Topmount QVM” for the RL side of the vehicle (cf. Table 2).
This aligned very well with the structure of the vehicle: The AFM was equipped with
uniball topmounts, which acted as an almost rigid link between the damper and the body.
Additionally, the vehicle’s engine was located in the front of the vehicle. This made the
model variant “Engine QVM”, which included an engine mass but no elastic topmount,
a plausible choice for the front axle. In contrast to that, a standard elastic topmount was
installed on the rear axle. Additionally, no big oscillating mass, like the engine in the
front, was present in the rear. Therefore, the model variant “Topmount QVM” seemed an
adequate choice for the rear left side of the vehicle.

To validate the obtained parametrized QVMs, we excited the optimized models with
one selected road profile (exponential sweep, 1–30 Hz, 100 mm/s zero-crossing velocity).
This excitation was also applied during the measurements of the vehicle performed on the
four-post test rig. In addition, a standard linear two-mass quarter-vehicle model equipped
with the nonlinear damper model described in Section 3.2 with an optimized parameter
set was also simulated (compare simple QVM from Table 2). These simulations were
repeated for a minimal damper current of 0.4 A, a medium damper current of 0.8 A, and a
maximum damper current of 1.6 A. MATLAB’s tfestimate function was used to calculate
the frequency response from road displacement to the acceleration of the vehicle body
depicted in Figure 5 and from the road displacement to the dynamic wheel load shown in
Figure 6. Even though transfer functions were only well defined for pure linear systems,
we assumed only limited errors because of the close-to-linear system behavior for constant
damper currents. For constant damper currents, the input-to-force dynamics described in
Section 3.2 did not come into effect. Nevertheless, the conducted investigation was only
qualitative and, in contrast to pure linear systems, may have resulted in slightly different
results for other excitations. It has to be noted that Figures 5 and 6 only show one excitation,
namely, the exponential sweep, 1–30 Hz with a 100 mm/s zero-crossing velocity.

Figure 5a shows that the body acceleration on the front left vehicle side had one
peak at around 1.5 Hz for the 0.4 A damper current case, which represents the body
mass eigenfrequency. Increasing the damper current suppressed this first peak. A second
broad peak appeared approximately between 10 and 16 Hz. This peak was only slightly
influenced by the different damper currents. Inspecting the second peak in Figure 5b at
around 14 Hz in the transfer function from the road profile to wheel load suggests that one
part of the broad peak in Figure 5a resulted from the wheel eigenfrequency.

Additionally, the inspection of the simulation data showed that, at around 10 Hz, the
body and engine mass oscillated in an anti-phased way. Hence, introducing the engine
mass in the QVM enhanced the capability of the model to approximate the magnitude
of the body acceleration, especially at higher frequencies. Even though the simple QVM
approximated the height of the first peak for the 0.4 A damper current better, the engine
QVM also met the eigenfrequency of the body mass. Looking at the 0.8 A and 1.6 A cases
from Figure 5a exhibits a similar approximation capability for both the simple and the
engine QVM model structure in the low-frequency range. For frequencies above 5 Hz,
the engine QVM approximated the magnitude much better. Despite minor exceptions,
Figure 5b shows that the engine QVM approximated the wheel load more accurately than
the simple QVM.
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Figure 5. Comparison of AFM’s frequency response from (a) road displacement zroad to the accelera-
tion of the vehicle body abody for different constant damper currents and (b) from road displacement
zroad to the dynamic wheel load Fz for different constant damper currents for the front left side of the
vehicle. Each subplot visualizes the measurement data, the data obtained from an optimized simple
QVM model, as well as the resulting data obtained from the optimized best QVM model structure.

Figure 6a reveals that the broad peak between 10 and 16 Hz, which can be observed in
Figure 5a, was less pronounced on the rear left side of the vehicle. Since the vehicle’s engine
was in the front, one cause for the broad peak was not present at the rear of the vehicle.
Similar to the front left side, the eigenfrequency of the body mass could be observed as a
peak in the magnitude of the body acceleration for the 0.4 A damper current in Figure 6a
at around 1.6 Hz. The wheel eigenfrequency of the 0.4 A damper current in Figure 6b can
be observed at around 15 Hz. Since the simple QVM model and the topmount QVM only
differed in the additional topmount elasticity, the transfer functions of both fitted models
were pretty close. Nevertheless, the more complex model structure can approximate the
magnitude of the body mass acceleration and the wheel load better than the simple QVM.
The advantage is evident for higher frequencies and the magnitude of wheel load depicted
in Figure 6b.
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zroad to the dynamic wheel load Fz for different constant damper currents for the rear left side of the
vehicle. Each subplot visualizes the measurement data, the data obtained from an optimized simple
QVM model as well as the resulting data obtained from the optimized best QVM model structure.

4. Training the Controller

Two different kinds of excitations stimulate the vertical dynamics of a vehicle: The
vertical excitation induced by the road profile and the coupled pitch and roll excitation
caused by the horizontal vehicle motion. The latter is mainly induced by steering, accelera-
tion, and braking inputs, which all can be measured. This allows to predict the horizontal
vehicle motion reasonably well. Thus, this impact on the vertical dynamics can also be
estimated by utilizing a simple pitch and roll model of the vehicle together with some
auxiliary measurements. Consequently, a prediction-based feed-forward controller can be
applied to compensate for undesired pitch and roll motion.

In contrast, it is less reasonable to apply a model-based feed-forward control for road-
induced disturbances. Since it is inconvenient to measure the uncertain road excitation
early and accurately enough, it is challenging to obtain an accurate prediction. Considering
that the pitch and roll dynamics of the vehicle can be handled by feed-forward control
as described above, we applied the RL-based control solely to the vertical dynamics part
excited by the road profile.

As described in Section 1, model-based or model-derived vertical dynamics controllers
are often designed based on different assumptions or modeling simplifications. Addi-
tionally, it is non-trivial to tune the controller parameters to account for different road
excitations and vehicle speeds. RL algorithms optimize a control law based on iterative
interaction with the to-be-controlled system or a simulation model of the system. By uti-
lizing sophisticated training models and training on a wide range of road excitations, the
RL-based training process could adopt a more performant control law operating on differ-
ent road excitations. Because of the generic characteristics of RL methods, the toolchain can
be automatized for different vehicle types with little additional effort.
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Training in simulation is fast, scalable, and safe. The training of the controller in the
real world would be performed on the four-post test rig, which is necessary to excite the real
vehicle with defined excitations and measure the dynamic wheel load. The application of
RL to a new problem usually includes a trial-and-error process and can be time consuming.
Additionally, equipping the vehicle on the test rig poses a significant overhead. Therefore,
our approach relies on a simulation-based training strategy utilizing the advanced QVMs
developed in Section 3.

4.1. The Reinforcement Learning Setting

The basic setting of RL is depicted in Figure 7. An RL agent learns a desired behavior
out of interaction with an environment. The agent can manipulate the environment by
applying an action a and, in return, obtains an observation vector o and a scalar reward r.
The goal of RL algorithms is to adapt a policy π such that the expected discounted return
is maximized.
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As opposed to the standard setting in control theory, in the basic RL setting, the agent
does not need any prior knowledge about the environment and a deterministic behavior
of the environment is not required. The non-deterministic approach of RL makes these
algorithms especially appealing for vertical dynamics control, where the road excitation is
assumed to be stochastic.

Since the RL algorithm adapts the policy solely through interaction and no additional
information about the environment is necessary, such algorithms are very generic and can
solve a wide range of sequential decision-making problems. However, the theory on RL
assumes that the environment behaves as a Markov Decision Process (MDP) [27]. Even
though the time delay in the input-to-force dynamics described in Section 3.2 violates this
assumption, the algorithms applied in this work are robust enough to train a performant
policy.

In deep RL, artificial neural networks are used to approximate several functions,
e.g., the so-called action-value function, state-value function, and the policy. In the last
decade, several powerful deep RL algorithms were proposed, such as the deep Q-network
(DQN) [28], proximal policy optimization (PPO) [29], deep deterministic policy gradient
(DDPG) [30], and soft actor–critic (SAC) [31]. Over the years, different well-maintained
open source implementations of these algorithms have been created and benchmarked.
The most widely used libraries include the RLLib [32] and stable-baselines3 [33].

4.2. Application to the Vertical Dynamics Problem

When applying RL to a specific problem, various design choices can be made. The
major degrees of freedom are the selection of the RL algorithm, its corresponding hyperpa-
rameters, the assembly of the observation vector o, and the design of the reward function r.
Additionally, the implementation details of the environment itself can affect the training.
In this section, we describe the application of RL to the vertical dynamics problem.
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4.2.1. The Training Setup

The QVM models developed and analyzed in Section 3 serve as a basis for the
simulation-based training environment. We utilized Modelica/Dymola to develop and
optimize the models, but most RL libraries interact with the environment via the OpenAI
gym [34] interface, which is implemented in Python. It has to be mentioned that the gym in-
terface has now further evolved to gymnasium [35], but the main features remain unchanged
or are only altered slightly. Since the training can most easily be conducted in a Python
environment, the Modelica models were integrated as an FMU into Python. In this work,
we used an improved version of the FMU-Python toolchain previously applied in [36,37] to
accomplish this integration. In addition, we utilized the RL baselines3 Zoo [38] to facilitate
the saving of the agent and to track the hyperparameters used during each training.

The aim of the training was to train one agent to handle road-induced disturbances,
which would then be applied to each vehicle corner. Previous investigations showed that
training separate agents specifically for each vehicle corner induced undesired pitch and
roll oscillations for symmetric pure vertical excitations on the four-post test rig. Even
though all posts performed the exact same motion in these tests, minor differences in
the policy resulted in different damper forces at each wheel and, therefore, undesired
pitch and roll motions occurred. In order to enable the agent to perform well on the
different vehicle sides, we trained the controller sequentially on the three QVMs described
in Section 3. In addition to changing the vehicle model during training, we exposed the
agent to different road excitations. Based on previous experience and to cover a wide
range of excitation profiles, we trained on sweep, bump, and wave excitations. The sweep
excitations were chosen for the training to ensure that the eigenfrequencies of the wheel
and the chassis were adequately excited during training. The bump and wave excitations
posed challenging events, which frequently occur in the real world and also excite different
modes of the vehicle.

In this work, we used a SAC implementation from the stable-baselines3 library [33].
The SAC is an actor–critic off-policy RL algorithm that augments the standard expected
sum of rewards optimization objective with an information theoretical entropy term of the
policy [31]. This entropy term favors stochastic policy behavior and is weighted against
the expected sum of rewards objective by a so-called temperature parameter. Thus, the
exploration vs. exploitation dilemma of RL is directly addressed in the objective function.
The SAC is designed for continuous action spaces and has successfully been applied to a
wide range of control problems, e.g., [37,39]. Additionally, a comparison of different DRL
algorithms on the vertical dynamics control problem conducted in [18] showed that the
SAC algorithm performed best in their setting. Therefore, we chose this algorithm for the
vertical dynamics application.

The environment was implemented with a sample time of 1 ms and trained with
various hyperparameters. The training with different hyperparameter sets and reward
function designs was performed parallelly on a DLR in-house computing cluster, where
one training with 70 million timesteps took around 24 h. Since only small neural network
sizes were used within the RL algorithm, the training was solely performed on the CPU, as
the training on the GPU did not increase training speed. During each training, the agent
was saved in regular time intervals. This way, we were able to restore performant agents,
even in cases where catastrophic forgetting [40] occurred. As described in Section 4.2.4,
each stored agent was benchmarked after the training and the most performant agents
were selected for evaluation in the real-world experiment. The hyperparameters used to
train the most performant agent are summarized in Appendix A.3 in Table A3.

4.2.2. Environment Interface

In RL, the agent adapts its policy based on observations and rewards returned from the
environment. The theory behind RL often assumes that the whole state of the environment
can be observed by the agent. However, in real-world application, it is not always feasible
to measure or estimate the whole state of the system and, therefore, it is not always possible
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to provide the full state measurement to the agent, resulting in a Partially Observable
Markov Decision Process (POMDP). Although many of the RL algorithms are developed
based on the assumption that the whole state is available, in many applications RL delivers
satisfying results even though not the whole state is available to the agent. In addition to
the availability of measurement signals, the assembly of the observation vector can guide
the training. Since it is not always obvious which signals provide valuable information to
the agent, we performed various trainings with different observation sets.

The model structure “Engine QVM” described in Section 3.3 and utilized to model the
front left and front right sides of the vehicle was essentially a three-mass oscillator which
yielded six states, two for each mass. An additional state resulted from the approximation
of the input-to-force dynamics by a first-order system, as described in Section 3.2. In
contrast, the model structure “Topmount QVM” used to approximate the rear left side
of the vehicle did not include the engine mass and, in consequence, also the two states
used to describe the engine motion. However, introducing the spring/damper element to
model the topmount again resulted in additional states. These two states, together with the
additional state for the first-order input-to-force approximation, added up to seven states
for all the model variants.

Nevertheless, in real-world applications, it is infeasible to measure all seven states
on each corner of the vehicle. Even though the AFM test vehicle was equipped with a
multitude of sensors [7], this is usually not the case for production vehicles. Therefore, we
only utilized the following sensor signals for this work:

• acceleration sensors at all four-wheel carriers;
• acceleration sensors at the front left, front right, and rear left chassis;
• displacement sensors between the chassis and wheel carrier at all four wheels;
• current sensor for each damper.

These sensor signals are used to compute the vertical chassis velocity vc,j, the vertical
wheel velocity vw,j, and the damper velocity vd,j for each side of the vehicle, i.e., j ∈
{fl, fr, rl, rr}.

In the end, the agent that performed best in the real-world tests included the following
quantities in the observation vector

oj =
[
vc,j, vw,j, vd,j, ij

]
, (6)

with ij representing the measured actual damper current and j ∈ {fl, fr, rl, rr}. This selection
seems reasonable, given that the ride comfort is calculated based on the vertical chassis
acceleration ac,j and the road-holding is closely linked to the vertical wheel acceleration
aw,j. The damper velocity vd,j is an important value because, in combination with ij, it
determines the damper force, as depicted in Figure 3. It should be noted that the quantities
vc,j, vw,j, and vd,j were used as inputs for an SH/GH controller implementation.

In contrast to choosing the quantities for the observation vector, the assembly of the
action vector was less complex. The force induced by the damper was controlled by the
position of an electromagnetic valve, which itself was controlled by the current through its
coil. On the damper control unit (DCU), the current flow could be controlled by adjusting
the duty cycle of a pulse-width modulation (PWM). One option for the selection of the
agent action would be to directly control the duty cycle of the PWM. However, this choice
carries the risk of the current in the coil becoming too high. Since a proven current controller
was available on the DCU, we selected the current setpoint as the action a for the RL agent.

4.2.3. Reward Function Design

The design of the reward function is a crucial degree of freedom in the application of
RL. In general, RL algorithms are designed to maximize the expected discounted sum of
future rewards. This implies that the reward should quantify desirable behavior, where
favorable behavior leads to a higher reward compared to a smaller reward for undesir-
able behavior.



Appl. Sci. 2024, 14, 7066 18 of 34

The main objective in vehicle vertical dynamics control is usually to optimize ride
comfort as well as road-holding [41]. However, these two objectives are, to some extent,
opposing each other. This means that at a certain point enhancing one metric yields a
corresponding deterioration in the other. Previous experience has shown that it is much
harder for the RL algorithm to optimize for comfort than for road-holding. Therefore,
we designed the reward function to include ride comfort but neglect road-holding in the
reward function to simplify the problem for the RL algorithm. Nevertheless, we integrated
a safety module into the whole vertical dynamics control system to ensure driving safety
during real-world road tests.

To enable the optimization of these objectives, a numerical quantification of the objec-
tive was necessary. In general, it is not trivial to measure ride comfort, since it describes a
subjective perception. Different metrics to quantify ride comfort are compared in [42]. In
this work, we assumed to enhance ride comfort by minimizing the vertical chassis motion.
Even though ride comfort is usually calculated from chassis vertical accelerations, we found
that including the chassis vertical velocity in the reward function leads to better results
compared to using the chassis acceleration.

In previous experiments, we noticed several undesired agent behaviors: First, the
agent actions tended to be very jittery, meaning that the action signal was very noisy from
one timestep to another. As a second issue, we observed that the policy induced high current
steps during high damper velocities. Given the damper characteristics depicted in Figure 3,
this led to a sudden change in the damper force, which resulted in undesirable noises and
might have harmed the damper due to increased mechanical stress. Additionally, it is
desirable to keep a low damping characteristic as a default. This way, the damper can absorb
high-frequency road disturbances, e.g., those induced by driving over a cobblestone road.

We designed the reward function such that (1) chassis motion was minimized, (2) high
jumps in the damper force were avoided, (3) the action signal was smooth, and (4) the
default damper current was low. To achieve this, we constructed the reward function out
of different terms, each accounting for a different objective weighted by an accompanying
weighting factor. The used terms and weights are listed in Table 3.

Table 3. Weights and terms used in the reward function.

Reward Weights Reward Terms
- - rfj Force jump reward term

kcm Chassis motion weight rcm Chassis motion reward term
k∆u Control signal jump weight r∆u Control signal jump reward term
ka Control signal weight ra Control signal reward term

The individual terms are assembled as shown in the following equation:

r = rfj(vd, ∆u)·(kcm·rcm(vc) + k∆u·r∆u(∆u) + ka·ra(a)) (7)

Herein, the damper velocity is denoted as vd, the chassis velocity as vc, and the action
as a. ∆u describes the demanded current jump ∆u, defined as

∆u = a − id. (8)

Herein, the current jump ∆u represents the difference between the commanded current
a and the measured current id.

The reward function r consists of two factors: The force jump reward term rfj is
multiplied with the weighted sum of all other reward terms listed in Table 3. Herein, the
force jump reward term is defined as

rfj(vd, ∆u) =

 1.0, (v d < |θvd |) or (∆u <|θ∆u|)

clip
(

1.0 − kfj(|vd| − θvd)·(|∆u| − θ∆u), 0.0, 1.0
)

, else
(9)
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with the parameters kfj, θvd, and θ∆u and the function clip(. . . , 0.0, 1.0), which limits the
value range to [0.0, 1.0]. The force jump reward term rfj takes the damper velocity vd
and the demanded current jump ∆u as input. It has to be noted that rfj can take values
between 0 and 1. This means that the whole reward in Equation (7) is 0 if rfj = 0. If rfj = 1,
then the other terms of the reward function come into effect. This way, the force jump
reward term is prioritized over the other terms, since it is able to scale the other terms. This
kind of hierarchical reward function design was adopted from our previous works [36,37].
Even though the main objective was to minimize the chassis motion, it was necessary to
give the force jump reward term such a prominent position within the reward function.
Adding the force jump reward term to the weighted sum in Equation (7) did not have a
significant effect.

The shape of the force jump reward term is depicted in Figure 8. It can be seen that
the function value becomes 0 if a large current jump is commanded at high damper speeds.
From the damper characteristics in Figure 3, it is evident that a big jump in the current
yields a high jump in the damper force if applied at high damper velocities. We encouraged
the agent to avoid high force jumps by shaping the force jump reward term as proposed in
Equation (9) and depicted in Figure 8.
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We make use of the Gaussian-like function gσ(x) in the following, which we define as

gσ(x) = e
−x2
2σ (10)

As observed in our previous works on applying RL, we found this function to be
helpful within the design of the reward function. The function has two helpful properties,
which we make use of: First of all, its values are limited: 0 < gσ(x) ≤ 1. This way the
contribution of each term to the reward function is normalized and the different terms can
be weighted by additional multipliers. The second advantage is that in addition to x = 0, it
has a non-zero gradient, which can guide the training.
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The chassis motion term rcm is designed to reward a minimized vertical chassis motion.
Therefore, we designed the chassis motion term as

rcm(vc) = 0.8·gσvc1
(vc) + 0.2·gσvc2

(vc) (11)

with the two chassis motion reward term parameters σvc1 and σvc2 . It should be noted that
the two terms in Equation (11) are weighted such that rcm(vc) is limited between 0 and 1.
The combination of the two Gaussian-like functions in that way essentially broadens the
peak compared to a single Gaussian-like function. In line with the results in [9], we found
that designing the comfort reward term based on the chassis vertical velocity yielded better
results in contrast to using the chassis vertical acceleration.

The next term in the reward function, i.e., the control signal jump reward term r∆u(∆u),
encourages a smooth action signal. To achieve this, we rewarded a small deviation between
the commanded current setpoint and measured current via the Gaussian-like function
defined in Equation (10).

r∆u(∆u) = gσ∆u(∆u), (12)

with the parameter σ∆u.
The last term in the reward function, i.e., the control signal reward term ra, promotes

a low default damping, which is desirable as discussed at the beginning of this section, i.e.,
Section 4.2.3. To implement this into the reward function, we used a simple linear term

ra(a) = ma a + ba, (13)

with the parameters ma and ba.
The parameters that led to the most performant agent are listed in Table A4 in

Appendix A.4.

4.2.4. Agent Performance Assessment

Most of the time, training a performant RL agent is an iterative process. This process
consists of training an agent, evaluating the trained agent, changing the training setup,
and then starting a new training. Different metrics are of interest during the evaluation of
the agents. Since the reward compresses multiple objectives into one scalar measure, this
reward may not be sufficient to assess the multiple objectives.

Therefore, we implemented a performant multi-objective agent assessment pipeline
to evaluate the trained agents. This pipeline was composed out of different steps that
were performed for each trained agent. In the first step, every trained agent was evaluated
on predefined road excitations and all signals of interest were temporarily stored. Then,
predefined metrics were calculated based on these signals and the resulting metrics them-
selves were also stored in a database. In addition to the metrics, all hyperparameters and
other information about the environment and the training were stored. Keeping track of all
the information allowed an in-depth analysis of the promising hyperparameters, reward
functions, or environment implementations. Additionally, this pipeline enabled traceability
and reproducible training results.

To rate the performance of the learned controller, we needed to relate the calculated
metrics to a state-of-the-art controller. To achieve a fair comparison, we optimized an SH
and a GH controller based on the optimal QVMs, which were also used during training.
After that, the metrics of interest were calculated for the optimized SH controller, the
optimized GH controller, and all trained RL-based controllers. To ensure a balanced
assessment of the controllers, we evaluated each controller version on a set of different
excitations including sweeps, wave shapes, and bump-like excitations. Following the
calculation, we compared each trained agent to the better one from SH and GH and took
the mean over all excitations. This resulted in a set of metrics that allowed us to compare
the trained controllers to state-of-the art controllers.
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In the controller assessment, we were especially interested in the comfort criterion, the
road-holding criterion, as well as the smoothness of the actions. During the assessment, we
applied a simplified version of the comfort criterion Jc from [43], i.e.,

Jc =

√√√√ 1
N

N

∑
k=1

a2
c,k, (14)

with the vertical chassis acceleration ac. To assess the road-holding Jrh, we calculated the
root mean square (rms) of the dynamic wheel load Fz,dyn

Jrh =

√√√√ 1
N

N

∑
k=1

F2
z,dyn,k. (15)

Finally, we measured the smoothness of the action signal Js via a mean of the absolute
change from one timestep (k − 1) to the next timestep k:

Js =
1
N

N

∑
k=1

|ak − ak−1|. (16)

In order to select agents for the evaluation on the real vehicle, we filtered all agents
in which the comfort criterion was a maximum of 5% worse compared to the reference
controller. The remaining agents were then sorted for smoothness in the action signal.
Finally, we chose the smoothest four agents for evaluation on the real vehicle.

5. Control System Verification

After the training and selection of the RL agent described in Section 4, the obtained
agent then needed to be deployed on the real vehicle. Nevertheless, an in-depth verification
of the trained RL agent and the whole control system was favorable to support a smooth
transition to the real vehicle. The aim of the verification process comprised three objectives:
(1) check the time domain behavior of the ANN-based RL agent, (2) evaluate the interaction
of the agent with the remaining part of the control system, and (3) assess the agent’s
behavior on a full vehicle.

The policy obtained during the RL training was, in our case, an ANN-based mapping
from the observation space to the input space. In contrast to analytical control laws, it
was hard to derive a priori properties for the trained ANN-based agent. Even though the
selected agent performed well on the scalar metrics defined within the agent performance
assessment described in Section 4.2.4, it was still possible that the agent exhibited undesired
behavior in the time domain. If the assessment metrics defined in Section 4.2.4. did not
cover all possible undesired behaviors, the agent might have learned a policy that was able
to maximize the reward and perform well across all performance assessment metrics but
still show undesirable behavior. Often, such undesirable policy patterns can be identified
by evaluating the time domain signals generated by the agent.

The second reason to validate the agent within a full-vehicle model (FVM) setting is
that the agent will be deployed in an entire control system, in which the RL policy is only
one component. In addition to the agent, the control system was comprised of different
modules, of which some will be described in Section 5.2. During the verification process,
the whole control system was integrated into the FVM simulation. Thus, the interaction
between different subcomponents as well as the implementation of their interfaces could
be checked.

The last cause to perform the evaluation simulation with the whole control system
integrated into an FVM is the approach from Section 4 to train the controller on QVM
models. To check the behavior of the agent applied to the FVM, the following controller
verification simulations were conducted.
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It has to be noted that we did not conduct a quantitative performance analysis on
the FVM. Since we were interested in the performance of the trained controller on the
real vehicle, the verification simulations were just a preliminary investigation to enable
real-world tests. Even though the FVM described in Section 5.1 was developed to fit
the real-world dynamics as well as possible, each model was a just a replica of the real
world and might not have been able to fully capture the underlying real-world dynamics.
Therefore, we will demonstrate the performance analysis on the data obtained from the
real-world experiments described in Section 6.

The remainder of this section is organized as follows: The full-vehicle model of
the AFM demonstrator is presented in Section 5.1. The entire vertical dynamics control
system composed of different submodules is then discussed in Section 5.2. The design and
optimization of the benchmark controller is briefly discussed in Section 5.3. The integration
of the developed control system into the simulation environment, which was later executed
on the RCP platform in the vehicle, is described in Section 5.4. Verification simulations
conclude this section in Section 5.5.

5.1. Full-Vehicle Model

The learned control agent was embedded into a multi-body-vehicle model for verifica-
tion. This integration enabled extensive controller testing within a nonlinear full-vehicle
model for both standard driving maneuvers and different road profiles, which can be either
measured or artificially created.

For these purposes, the vehicle model was implemented in the object-oriented model-
ing language Modelica as a multi-body model, which enabled full spatial motion. Its chassis
sub-model comprised advanced models of the front McPherson and rear integral-link sus-
pensions. Further, it contained stabilizers, a steering assembly, and wheels that utilized
the semi-physical tire model TMeasy [44]. A driver model and the vehicle environment,
including the road, were provided to simulate driving maneuvers. The learned control
agent was integrated as an FMU. For further details of the full-vehicle model of the AFM,
see [7,20,24].

In addition to the benefits of multi-physical modeling, the implementation in Modelica
offered the ability to implement the semi-active damper as a one-dimensional translational
model and to use its parameterized front and rear variants in both the QVM and the full-
vehicle model. The one-dimensional translational damper model, described in Section 3.2,
was further extended with additional accessories, including bushings, bump, and rebound
stops, depending on the desired level of detail. The control and necessary measured signals
of the semi-active damper’s model were all readily accessible via a virtual control bus.

5.2. Vertical Dynamics Control System

As described in Section 4, the RL controller was mainly designed to compensate the
excitations induced by the road itself. In addition, there were also parts of vertical dynamics
effects in real driving operation that were caused by driver inputs. These were, for example,
the chassis rolling during cornering or the pitching during acceleration or braking. In order
to take these excitations into account in the vertical dynamics control concept, the overall
control system consisted of further modules in addition to the RL controller:

• Prediction module for vehicle body accelerations:

Lateral and longitudinal accelerations were calculated based on the brake pedal
position and the steering wheel angle. A stationary single-track model was applied to
neglect the system dynamics and, thus, enable time prediction.

• Feed-forward control:

An inversion-based approach was used to calculate the required damper forces, which
would compensate for the resulting roll and pitch angle based on the predicted body
accelerations.
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Even though the RL-based controller was tested in simulation, a safe operation of a
learning-based controller cannot be ensured a priori. To intercept unsafe driving conditions,
we added a safety module for all driving tests conducted on real roads:

• Safety module:

As soon as critical roll and pitch rates of the vehicle body were detected or in case of
ESC activation, the safety module was activated and switched to a certain constant damper
current, which provided safe driving. Details regarding this concept can be found in [20].

Furthermore, there was an SH/GH controller included in the overall control system,
which acted as a benchmark controller. The vehicle software allowed us to switch between
the SH/GH and the RL controller. The design and parameterization of this reference
controller is presented in the following section.

5.3. Design and Optimization of the Benchmark Controller

In order to assess the trained controller on the real vehicle, a benchmark controller
was necessary (see [20]). In this work, we used a slightly modified version of the SH/GH
controller originally presented in [2]. The original version of the SH/GH controller pos-
tulated a virtual damper between the sky and the chassis as well as a virtual damper
between the road and the wheel mass. The virtual forces, which would result from the two
virtual dampers, were then applied by the semi-active damper, if the damper characteristics
allowed it. Otherwise, the forces were clipped to the maximum applicable forces. The
parameters of the controller were the damping coefficients of both the virtual skyhook
damper and the virtual groundhook damper.

Even though this concept is appealing, the application was highly dependent on
the measurement quality of the damper velocity. The SH/GH implementation described
above output a desired damper force, but the interface for controlling the damper was
a desired damper current. To obtain the desired damper current for a given force, the
damper characteristics depicted in Figure 3 had to be inverted. The calculation was then
highly dependent on the damper velocity. We found that this dependency affected the
applicability of the SH/GH controller implementation, in which the controller output a
desired damper force.

We used a modified version of the SH/GH controller with a current interface to
minimize the dependency on the damper velocity measurement. In this controller variant,
the controller directly output a desired damper current, instead of a damper force. The
structure of the benchmark controller is depicted in Figure 9, where the SH current demand
iSH is calculated as

iSH =

{
kSH vc if vc·vd ≥ 0

0 else
(17)

and the GH current setpoint iGH is calculated as

iGH =

{
kGH vw if vw·vd < 0

0 else
. (18)

In this equation, vw denotes the vertical wheel velocity and vd denotes the damper
velocity. In our convention, vd < 0 represents a compression of the damper.
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To ensure a fair comparison, we optimized the controller parameters kSH and kGH in
Dymola using the Optimization Library [26]. The optimization was performed on the QVM
described in Section 3 and on different artificial road excitations. We optimized a separate
parameter set for each vehicle corner using integral variants of the objectives Jc and Jrh
from Equations (14) and (15).

5.4. Verification Toolchain

For the application on the real vehicle, the trained agents had to be embedded in the
described vertical dynamics control system that is implemented in MATLAB/Simulink
R2022b (cf. Section 5.2). The complete control system could then be deployed on embedded
targets such as the AFM’s RCP platform. Before the control system was tested in real-world
experiments, it was favorable to verify the complete control system in a software-in-the-
loop (SiL) simulation using the full-vehicle model. Therefore, it was necessary to first
transfer the trained agents from the Python- and PyTorch-based training environment to
the vertical dynamics control system in Simulink. The transfer from PyTorch to Simulink
was realized by a custom code generation that implemented the whole neural network
including its weights in plain C-Code. This C-Code could then be automatically wrapped
into an S-Function by means of the MATLAB Legacy Code Tool.

In a second step, we transfer the whole control system to Modelica/Dymola in order
to enable the SiL tests, as depicted in Figure 10. The transfer from Simulink to Dymola was
carried out via the Functional Mock-up Interface (FMI), supported by both simulation tools.
This automatized process ensured that the whole control system, which was deployed to
the AFM’s RCP, was verified in the FVM simulation setup.
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5.5. Verification Simulation

After the integration of the whole control system into the FVM simulation setup as
FMU, we conducted several simulations to verify the RL agent together with the control
system. Additionally, the SH/GH benchmark controller was simulated as a reference. To
verify the RL agent, several time domain signals were evaluated and checked for plausibility.
Since we were mainly interested in the performance of the RL agent on the real vehicle,
the verification simulations conducted on the FVM delivered only qualitative results and
prepared for the real-world tests.

Figure 11a shows the rendering of the simulated vehicle and, in Figure 11b, the
road height profile for an ISO 8608 [19] type B road is displayed. The feedback of the
controller and the vehicle response of the FVM for the excitation with the selected type
B road are depicted in Figure 12. The depicted signals are the dynamic wheel load, the
body acceleration, and the damper currents calculated by the RL agent or the SH/GH,
respectively. The depicted signals are all exemplary for the front left side of the vehicle.
We selected the ISO 8608 type B road as excitation for the depicted verification simulation,
as ISO 8608 road types A and B are the most common road types according to [45]. Since
road type A is very smooth, we chose road type B as representative but still wavy enough
to excite the controller. In the simulation, the vehicle was initialized with a velocity of
95 km/h, which is below the recommended maximum velocity for this road type, as
analyzed in [45].
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(b) part of the ISO 8608 type B road height profile used as excitation for verification.

Figure 12 reveals that the dynamic wheel load as well as the chassis acceleration were
similar for both controller types. Additionally, it can be seen that the commanded signal
calculated by the RL policy depicted in blue on the bottom subplot was reasonably smooth.
This is an important check, as ANN-based policies obtained from RL sometimes tend to be
very noisy. In contrast to the SH/GH controller, the RL policy made fewer interventions
with high currents and did not induce big current jumps. The SH/GH controller relied on
the direction of the damper velocity with respect to both the wheel velocity and chassis
velocity. Therefore, it was prone to command current jumps in case one of the velocities
changed direction.

Additional simulations verified the integrity of the whole control system together with
the embedded RL agent. The application of the RL agent, which was trained on QVMs,
in the FVM did not show concerning behavior. Therefore, we concluded that the control
system was sufficient to be tested on the vehicle in real-world tests.
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6. Real-World Test

After the SIL tests confirmed the integrity of the selected RL agent within the vertical
dynamics control algorithm, they were tested in real-world experiments (also see [20]).
For a quantitative analysis, tests were once again carried out using the four-post test rig,
which enabled a precise repetition of excitation profiles and, thus, the direct comparison of
different controllers. Further, high-velocity test drives were carried out on a real road with
a rough surface and a significant ground bump. As these experiments were not exactly
reproduceable, only a qualitative assessment of the controllers was possible.

In the conducted tests, the selected RL agent was compared to a baseline SH/GH con-
troller that is described in Section 5.3. In the following, the experimental setup is described,
the obtained results are both illustrated and discussed, and a concluding assessment of the
RL agents is presented.

6.1. Results from the Test Drives

In addition to the tests on the test rig, the controller was also tested while driving
on real roads, as depicted in Figure 13. The sensor setup during the test drives on the
road reduces to the sensors which are mounted on the vehicle (cf. Table A2). In particular,
the ground-based measurements, i.e., sensors integrated in the posts, were unavailable
for these tests. As a result, the assessment of the controllers was limited to the subjective
perception of an experienced test driver.
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The tests were carried out on roads of different characteristics and with various
driving maneuvers. In contrast to the test rig, no benchmark measurements were available
for the road tests. Thus, the tests were limited to objectification by an experienced test
driver and application engineer. The controller modules described in Section 5.2 and
designed to ensure safe driving operation were able to intervene as expected. Driver-
induced excitations were handled by the predictive feed-forward control and the safety
module. The RL controller was able to respond to road-induced excitations and ensure a
comfortable driving experience. While driving on a bumpy road, as depicted in Figure 13,
the RL controller was able to ensure safe body control and safe driving stability even
when extreme road excitations occurred. The test driver confirmed that the RL controller
minimized the chassis movement and, thus, provided a comfortable driving experience.

6.2. Results from the Four-Post Test Rig

The final experiments on the four-post test rig, which was also used to obtain measure-
ment data (cf. Figure 1), were conducted to quantitatively evaluate the trained controller.
To set the performance of the RL-based controller into perspective, the offline-optimized
benchmark controller described in Section 5.3 was also evaluated on the same excitations.
The evaluation of the controllers on the four-post test rig provided several advantages:
First of all, every excitation could exactly be repeated for every controller. Quantitatively
evaluating different controllers on real roads requires a high accuracy for each repetition.
Even small lateral displacements between two experiments might result in altered vertical
excitation, e.g., if in one experiment the wheel hits a pothole and misses it in the next pass.
The second advantage of the test rig was the additional sensor setup. Force sensors inside
the posts could directly measure the wheel load, and high-quality acceleration sensors
were additionally used to obtain the chassis acceleration. Measuring the wheel load in
real-world driving tests requires additional modification of the vehicle and, thus, was not
feasible. To enable a holistic analysis of the vehicle dynamics, all the quantities listed in
Table A2 were measured for different vertical excitations.

We used a wide range of excitation types to evaluate the performance of the con-
trollers. The first excitation category was sine sweeps ranging from 1 Hz to 30 Hz with
exponentially increasing frequency and different constant post zero-crossing velocities of
(50, 100, 150, 200, and 250) mm/s. The second type of excitations were synthetic road
excitations of type A up to type D according to ISO 8608 [19]. Type A roads represent the
smoothest roads and type D represents the bumpiest ones. The work presented in [45]
concluded that type A and B roads typically represent roads such as motorways or other
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high-quality roads. Roads of Type D and worse are often used to represent unpaved roads
for which a maximum velocity of < 15 km/h is recommended [45]. We created the synthetic
road excitations such that the vehicle started with a virtual velocity of 1 m/s and increased
the velocity linearly up to a maximum velocity. Afterwards, we then decreased the velocity
again down to 1 m/s. Additionally, two different versions of the synthetic road were tested:
In the first version, all posts were excited with the same excitation, i.e., a synchronous
excitation. For the second version, which excited the posts in an asynchronous fashion,
the phase between the posts was randomly shifted. The last set of excitations are real-road
excitations, which were recorded and reproduced on the testbench and represented both a
rough road and a rough bump.

From the obtained measurement data, we calculated the road-holding criterion
(cf. Equation (15)) and a comfort criterion inspired by ISO 2631-1 [43]. The norm ISO
2631-1 defines comfort metrics for humans, which are subject to whole-body vibrations.
To calculate the vertical excitation comfort metric according to ISO 2631-1, the seat surface
acceleration first had to be modified by specified filters. Afterwards, the RMS of this filtered
acceleration was calculated. Since, in our test setup, the vertical acceleration of the seat
surface was not measured, we calculated the filtered RMS for each of the three chassis
accelerations and took the mean value for evaluation. After calculating the comfort and
road-holding criterion for both the RL-based and the benchmark controller, a reference
value was calculated by normalizing the metrics of the RL-based controller to the metrics
of the benchmark controller. This resulted in a metric that was easy to interpret: Values
below 1 indicated that the RL-based controller performed better on this metric, and vice
versa. The obtained results are listed in Table 4 and depicted as a pareto plot in Figure 14.

Table 4. Normalized performance metrics of the trained controller on different excitations. Metrics
smaller than 1, depicted in green, indicate a superior performance of the RL agent; metrics greater
than 1, depicted in red, represent a superior performance of the benchmark controller (compare [20]).

Excitation Type Adapted ISO 2631
Comfort Criterion Road-Holding Criterion

Exponential Sine-Sweep (1–30 Hz|50 mm/s) Sweep 0.971 1.017
Exponential Sine-Sweep (1–30 Hz|100 mm/s) Sweep 1.019 1.028
Exponential Sine-Sweep (1–30 Hz|150 mm/s) Sweep 1.083 0.921
Exponential Sine-Sweep (1–30 Hz|200 mm/s) Sweep 1.108 0.871
Exponential Sine-Sweep (1–30 Hz|250 mm/s) Sweep 1.092 0.842
ISO 8608 Type A Road (asynchronous) Road-like 0.931 0.954
ISO 8608 Type B Road (asynchronous) Road-like 0.967 0.980
ISO 8608 Type C Road (asynchronous) Road-like 0.998 0.993
ISO 8608 Type D Road (asynchronous) Road-like 1.024 0.991
ISO 8608 Type A Road (synchronous) Road-like 0.947 0.943
ISO 8608 Type C Road (synchronous) Road-like 0.993 0.995
ISO 8608 Type D Road (synchronous) Road-like 1.032 0.991
Real Road Replay: Rough Bump Road-like 0.924 0.982
Real Road Replay: Rough Road Road-like 0.962 0.992

Figure 14 summarizes the test results in a pareto plot: All markers in the left bottom
quadrant represent an excitation in which the RL agent performed better in both the road-
holding as well as the adapted comfort metric. All markers with a road-holding criterion
greater than 1 correspond to an excitation where the RL agent performed worse. Accord-
ingly, markers with an adapted comfort criterion greater than 1 represent an excitation
where the agent performed worse. The subplots of Figure 14 depict the metrics on different
excitation types. Remark: Due to a corrupted measurement, the metrics for the road type B
are missing on the synchronous road excitations.
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Figure 14. Normalized performance metrics of the trained controller as pareto plots on (a) sine sweep,
(b) synchronous synthetic road excitations, (c) real-road replays, and (d) asynchronous synthetic road
excitations. Metrics smaller than 1 represent a superior performance of the RL agent, and metrics
greater than 1 correspond to a superior performance of the benchmark controller. (Remark: Due to a
corrupted measurement, road type B is missing in subplot (b)).

Figure 14a shows that the RL-based controller can improve the road-holding for the
sweeps with a zero-crossing velocity ≥ 150 mm/s but thereby deteriorates the comfort
criterion. For the sweep with a 50 mm/s zero-crossing velocity, the RL agent can improve
the comfort but deteriorates the road-holding. Finally, for the excitation with 100 mm/s, the
benchmark controller outperformed the RL agent on both metrics. In contrast, Figure 14b–d
reveal that the RL agent was able to improve the road-holding metric for all examined road-
like excitations. Apart from two exceptions, the trained controller also outperformed the
benchmark controller in the adapted ISO 2631-1 comfort criterion. In Figure 14b,d, the two
excitations where the trained controller could only improve the road-holding metric were,
in both cases, the road type D, which corresponded to an unpaved road [45]. Additionally,
Figure 14b,d also show that the trained controller performed worse with a decreasing road
quality. Nevertheless, the trained agent performed better than the benchmark controller on
both metrics for all road types apart from type D. The observation that the trained agent
was able to handle road-like excitations better than the benchmark controller was also
backed by the tests with the road replay excitations, depicted in Figure 14c.
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Since the control policy of the RL agent was obtained by a data-driven training process,
it was not apparent why the RL agent performed well on some of the excitations and worse
on others. Additionally, the semi-active vertical dynamics is a highly complex control
problem for which an optimal solution is not trivial. This makes the reasoning of the
learned RL policy intricate. In general, the comparison of the control signals of both
controller variants on the sweep inputs showed that the trained controller applied higher
damper currents, especially at higher frequencies. This way, the RL agent outperformed
the benchmark controller in controlling the wheel movement and, therefore, improved
road-holding for the sweep excitations with a zero-crossing velocity ≥ 150 mm/s. One
explanation for the superior performance of the learned controller for higher frequencies
lies in the choice of the RL discount rate γ = 0.99 together with the sample time Ts = 1 ms: in
RL, the algorithm tries to optimize the discounted future return G, defined as the discounted
sum of future rewards R at timestep i:

Gi =
N

∑
k=0

γkRi+k+1. (19)

This means that the contribution of future rewards decreases exponentially with the
discount rate γ. For γ = 0.99 and a sample time Ts = 1 ms, this means that for 0.23 s the
reward contribution is already decreased to less then 10%. This results in a relatively short
horizon and might explain the difficulties of the agent to deal with the lower frequencies
during the 1–30 Hz sweep excitation. During the training stage, we also performed trainings
with γ = 0.999. However, the results did not meet the desired performance requirements
during the agent assessment, described in Section 4.2.4.

To summarize, the results of the four-post test rig evaluation of the trained controller,
we can conclude that the trained RL-based controller is able to outperform the offline-
optimized benchmark controller on road-like excitations, improving the comfort criterion
by about 2.5% and the road-holding criterion by about 2.0% on average.

7. Summary and Outlook

In this work, we covered the whole RL controller design process for the semi-active
vertical dynamics control problem. We derived a QVM-based enhanced training model,
whose structure and parameters were obtained by optimization based on measurement
data. We showed that our modeling approach approximates the real measurement data
better than a standard QVM approach. Additionally, we derived a damper model and
parametrized it by optimization on measurement data.

The obtained models were then utilized to train an RL-based control policy. We
proposed one way of incorporating different objectives into the reward function, which
included the consideration of penalizing big jumps in the damper force. This consideration
was based on previous real-world observations in which high damper force jumps induced
undesirable bump sounds. After the training, all obtained controller variants were com-
pared in an agent performance assessment, and the best was selected for further evaluation.

The selected agent was then validated and tested in a high-fidelity FVM simulation
setup. After the assessment proved the integrity of the trained controller, the agent was
subject to quantitative and qualitative real-world tests. To ensure a fair comparison, a
benchmark controller was optimized in simulation. The quantitative evaluation on a real-
world four-post test rig revealed that the RL-based controller was able to outperform the
offline-optimized benchmark controller on road-like excitations, improving the comfort
criterion by about 2.5% and the road-holding criterion by about 2.0% on average. An
additional qualitative driving assessment on real roads showed that the RL-based con-
troller, together with a feed-forward module responsible for handling the driver, induced
disturbances and ensured safe body control and safe driving stability even when extreme
road excitations occurred. Future work will address the improvement of the RL-based
controller on rough road excitations.
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Appendix A

Appendix A.1. Results of the QVM Structure and Parameter Optimization

In Table A1, the results of the QVM parameter optimization described in Section 3.3
and the best QVM model structure are summarized.

Table A1. Resulting model structure and parameters from the optimization-based parametrization of
the QVM. To set parameters into perspective, additional reference values are listed, where available.

Front Left (FL) Front Right (FR) Rear Left (RL)
QVM Structure Engine QVM Engine QVM Topmount QVM
Body mass [kg] 278 272 426

Wheel mass [kg] 52.0 51.4 45.8
Suspension spring stiffness [N/m] 5.51·104 4.78·104 9.32·104

Tire spring stiffness [N/m] 3.52·105 3.64·105 3.94·105

Tire damping [Ns/m] 1.13·103 1.23·103 8.14·102

Spring ratio ia,s 0.806 0.843 0.661
Spring ratio ib,s 0.0 0.0445 0.0

Damper ratio ia,d 0.805 0.744 0.710
Damper ratio ib,d 0.0 0.0365 1.0
Engine mass [kg] 171 149 −

Engine bearing stiffness [N/m] 4.36·105 3.41·105 −
Engine bearing damping [Ns/m] 2.42·103 2.53·103 −

Topmount bearing stiffness [ N/m] − − 6.27·105

Topmount bearing damping [Ns/m] − − 4.06 ·102

Damper friction force [N] 42.0 48.0 103

Appendix A.2. List of Measured Signals during the Four-Post Test Rig Experiments

Note: All measurands shown in Table A2 are one-dimensional and refer to the
vertical direction.
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Table A2. Overview of the measurement setup (compare [20]).

Availability
Measurand No. of Signals Sensor Type Comments

Test Rig Vehicle
Post position 4 N.A.

Integrated test rig sensors

✓ ✗

Post velocity 4 N.A. ✓ ✗

Post acceleration 4 Accelerometer ✓ ✗

Wheel load 4 Load cell ✓ ✗

Wheel acceleration 4 Accelerometer - ✓ ✓

Body acceleration 3 Accelerometer At rear axle only one sensor
on the left-hand side ✓ ✓

Deflection wheel–chassis 4 Linear potentiometer Only available on test rig ✓ ✗

Engine deflection 3 Linear potentiometer - ✓ ✓

Engine acceleration 1 Accelerometer - ✓ ✓

Damper deflection 4 Rotary potentiometers - ✓ ✓

Tire deflection 2 Laser sensor Single-sided, front and rear.
Only available on test rig ✓ ✗

Damper current 4 Hall effect sensor - ✓ ✓

Appendix A.3. Hyperparameters Used for Training the RL Agent

We used the stable-baselines3 [33] SAC implementation for the training. The agent
was trained with a sample time Ts = 0.001 s and the hyperparameters listed in Table A3.

Table A3. Hyperparameters applied in training the SAC agent.

Hyperparameter Value
n-timesteps 3·106

policy “MlpPolicy”
policy_kwargs “dict(net_arch = [64, 64])”
learning_rate 1·10−5

buffer_size 1·106

learning_starts 100
batch_size 256

tau 0.005
gamma 0.99

train_freq 1
gradient_steps 1

ent_coef “auto”
use_sde false

Appendix A.4. Parametrization of the Reward Function

The following table lists the parameters of the reward function, which resulted in the
most performant real-world agent.
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Table A4. Reward function parameters.

Parameter Value
kcm 5
k∆u 0.5
ka 2
kfj 20
θvd 0.01
θ∆u 0.01
ma

1.6
1.3

ba − 1
1.3
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45. Múčka, P. Simulated Road Profiles According to ISO 8608 in Vibration Analysis. J. Test. Eval. 2017, 46, 405–418. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/icra.2018.8460528
https://specification.modelica.org/maint/3.6/MLS.html
https://fmi-standard.org/
https://doi.org/10.3390/act10110301
https://doi.org/10.3384/ecp14096283
https://doi.org/10.3384/ecp12076669
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1606.01540
https://zenodo.org/records/8127026
https://doi.org/10.51202/9783181023495-25
https://doi.org/10.1109/IV47402.2020.9304578
https://github.com/DLR-RM/rl-baselines3-zoo
https://doi.org/10.48550/arXiv.1812.05905
https://doi.org/10.1073/pnas.1611835114
https://www.ncbi.nlm.nih.gov/pubmed/28292907
https://doi.org/10.1007/s10010-019-00361-6
https://doi.org/10.1007/978-3-031-07305-2_94
https://doi.org/10.1520/JTE20160265

	Introduction 
	Related Work 
	Contribution and Overview of This Work 

	The Vertical Dynamics RL Controller Design Process 
	Modeling and Parameter Optimization of the Training Model 
	Selection of the Training Model Structure 
	Damper Identification and Modeling 
	Quarter-Vehicle Modeling 

	Training the Controller 
	The Reinforcement Learning Setting 
	Application to the Vertical Dynamics Problem 
	The Training Setup 
	Environment Interface 
	Reward Function Design 
	Agent Performance Assessment 


	Control System Verification 
	Full-Vehicle Model 
	Vertical Dynamics Control System 
	Design and Optimization of the Benchmark Controller 
	Verification Toolchain 
	Verification Simulation 

	Real-World Test 
	Results from the Test Drives 
	Results from the Four-Post Test Rig 

	Summary and Outlook 
	Appendix A
	Results of the QVM Structure and Parameter Optimization 
	List of Measured Signals during the Four-Post Test Rig Experiments 
	Hyperparameters Used for Training the RL Agent 
	Parametrization of the Reward Function 

	References

