Diaconu, Codrut-Andrei und Gottschling, Nina Maria (2024) Uncertainty-Aware Learning With Label Noise for Glacier Mass Balance Modeling. IEEE Geoscience and Remote Sensing Letters, 21, Seiten 1-5. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2024.3356160. ISSN 1545-598X.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://dx.doi.org/10.1109/LGRS.2024.3356160
Kurzfassung
Glacier mass balance (MB) modeling is crucial for understanding the impact of climate change on Earth’s freshwater resources and sea-level rise. Recent works have shown the benefit of using machine learning (ML) and deep learning (DL) methods to better capture the nonlinearities in the system than commonly used temperature-index models. However, when relying on remote sensing products for training, the presence of data noise is a challenge for these methods, and therefore quantifying the uncertainty becomes essential. In this work, we produce a tabular dataset consisting of annual MBs for 1000 glaciers over 20 years with meteorological and topographical input features. Using this dataset, we systematically study various uncertainty estimation methods and their impact on the quality of the predictions. Our experimental results show that ensemble methods are promising for capturing the uncertainty in the data: their predictions are more accurate, more robust against label noise, and better calibrated. In particular, the multilayer perceptron (MLP) ensemble coupled with an explicit noise model shows an increase of up to 5.5% in the explained variance and is much less affected by the gradually injected label noise: the average mean absolute error (MAE) increases at a rate twice smaller. For reproducibility, code and data are available at https://github.com/dcodrut/oggm_smb_dl_uq.
elib-URL des Eintrags: | https://elib.dlr.de/206368/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Uncertainty-Aware Learning With Label Noise for Glacier Mass Balance Modeling | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 19 Januar 2024 | ||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 21 | ||||||||||||
DOI: | 10.1109/LGRS.2024.3356160 | ||||||||||||
Seitenbereich: | Seiten 1-5 | ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
Name der Reihe: | Uncertainty-Aware and Robust Machine Learning for Remote Sensing | ||||||||||||
ISSN: | 1545-598X | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Ensemble learning, glacier mass balance (MB) modeling, noisy labels, robustness, uncertainty quantification (UQ) | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Künstliche Intelligenz | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||
Hinterlegt von: | Diaconu, Codrut-Andrei | ||||||||||||
Hinterlegt am: | 13 Sep 2024 09:15 | ||||||||||||
Letzte Änderung: | 13 Sep 2024 09:15 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags