elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Uncertainty-Aware Learning With Label Noise for Glacier Mass Balance Modeling

Diaconu, Codrut-Andrei und Gottschling, Nina Maria (2024) Uncertainty-Aware Learning With Label Noise for Glacier Mass Balance Modeling. IEEE Geoscience and Remote Sensing Letters, 21, Seiten 1-5. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2024.3356160. ISSN 1545-598X.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://dx.doi.org/10.1109/LGRS.2024.3356160

Kurzfassung

Glacier mass balance (MB) modeling is crucial for understanding the impact of climate change on Earth’s freshwater resources and sea-level rise. Recent works have shown the benefit of using machine learning (ML) and deep learning (DL) methods to better capture the nonlinearities in the system than commonly used temperature-index models. However, when relying on remote sensing products for training, the presence of data noise is a challenge for these methods, and therefore quantifying the uncertainty becomes essential. In this work, we produce a tabular dataset consisting of annual MBs for 1000 glaciers over 20 years with meteorological and topographical input features. Using this dataset, we systematically study various uncertainty estimation methods and their impact on the quality of the predictions. Our experimental results show that ensemble methods are promising for capturing the uncertainty in the data: their predictions are more accurate, more robust against label noise, and better calibrated. In particular, the multilayer perceptron (MLP) ensemble coupled with an explicit noise model shows an increase of up to 5.5% in the explained variance and is much less affected by the gradually injected label noise: the average mean absolute error (MAE) increases at a rate twice smaller. For reproducibility, code and data are available at https://github.com/dcodrut/oggm_smb_dl_uq.

elib-URL des Eintrags:https://elib.dlr.de/206368/
Dokumentart:Zeitschriftenbeitrag
Titel:Uncertainty-Aware Learning With Label Noise for Glacier Mass Balance Modeling
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Diaconu, Codrut-Andreicodrut-andrei.diaconu (at) dlr.dehttps://orcid.org/0009-0000-1941-0139167374950
Gottschling, Nina Marianina-maria.gottschling (at) dlr.dehttps://orcid.org/0009-0004-0275-7522NICHT SPEZIFIZIERT
Datum:19 Januar 2024
Erschienen in:IEEE Geoscience and Remote Sensing Letters
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:21
DOI:10.1109/LGRS.2024.3356160
Seitenbereich:Seiten 1-5
Verlag:IEEE - Institute of Electrical and Electronics Engineers
Name der Reihe:Uncertainty-Aware and Robust Machine Learning for Remote Sensing
ISSN:1545-598X
Status:veröffentlicht
Stichwörter:Ensemble learning, glacier mass balance (MB) modeling, noisy labels, robustness, uncertainty quantification (UQ)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung, R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Diaconu, Codrut-Andrei
Hinterlegt am:13 Sep 2024 09:15
Letzte Änderung:13 Sep 2024 09:15

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.