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Uncertainty-Aware Learning With Label Noise
for Glacier Mass Balance Modeling
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Abstract— Glacier mass balance (MB) modeling is crucial
for understanding the impact of climate change on Earth’s
freshwater resources and sea-level rise. Recent works have shown
the benefit of using machine learning (ML) and deep learning
(DL) methods to better capture the nonlinearities in the system
than commonly used temperature-index models. However, when
relying on remote sensing products for training, the presence
of data noise is a challenge for these methods, and therefore
quantifying the uncertainty becomes essential. In this work,
we produce a tabular dataset consisting of annual MBs for
1000 glaciers over 20 years with meteorological and topographical
input features. Using this dataset, we systematically study various
uncertainty estimation methods and their impact on the quality
of the predictions. Our experimental results show that ensemble
methods are promising for capturing the uncertainty in the
data: their predictions are more accurate, more robust against
label noise, and better calibrated. In particular, the multilayer
perceptron (MLP) ensemble coupled with an explicit noise model
shows an increase of up to 5.5% in the explained variance
and is much less affected by the gradually injected label noise:
the average mean absolute error (MAE) increases at a rate
twice smaller. For reproducibility, code and data are available
at https://github.com/dcodrut/oggm_smb_dl_uq.

Index Terms— Ensemble learning, glacier mass balance (MB)
modeling, noisy labels, robustness, uncertainty quantification
(UQ).

I. INTRODUCTION

THE cryosphere, as any other component of the Earth
system, is highly complex and nonlinear. Modeling it

accurately remains challenging, especially at regional scale [1].
As the societal and environmental impact of the retreat of
glaciers is certain [2], appropriate methods for modeling and
predicting the evolution of the glaciers are important to adapt
necessary policies [3]. The glacier mass balance (MB), defined
as the sum of accumulation (e.g., through snow, avalanches,
refreezing of rain) and ablation (e.g., through surface melting,
drifting snow, sublimation) [4], over a fixed period of time,

Manuscript received 29 September 2023; revised 22 December 2023;
accepted 3 January 2024. Date of publication 19 January 2024; date of current
version 6 February 2024. This work was supported by the Helmholtz Associ-
ation Initiative and Networking Fund on the HAICORE@FZJ Partition. The
work of Codrut-Andrei Diaconu was supported by the Helmholtz Association
through the Joint Research School Munich School for Data Science–(MuDS)
under Grant HIDSS-0006. (Corresponding author: Codrut-Andrei Diaconu.)

Codrut-Andrei Diaconu is with the German Aerospace Center (DLR), 82234
Weßling, Germany, and also with the Technical University of Munich (TUM),
80333 Munich, Germany (e-mail: codrut-andrei.diaconu@dlr.de).

Nina Maria Gottschling is with the German Aerospace Center (DLR), 82234
Weßling, Germany.

This article has supplementary downloadable material available at
https://doi.org/10.1109/LGRS.2024.3356160, provided by the authors.

Digital Object Identifier 10.1109/LGRS.2024.3356160

is one of the most important components in glacier modeling
and also one of the essential climate variables (ECVs) [5].

In [6], it was shown that there is a significant nonlinear part
in the relationship between climate and MB. Supporting this
assumption, Bolibar et al. [7] show that deep learning (DL)
captures the nonlinear response of MBs to temperature and
precipitation, especially in extreme cases, better than classical
approaches, such as linear statistical and temperature-index
models.

This is opposed to the commonly used glacier MB models
that can be applied at a large scale. These often rely on
temperature-index models [1], which assume a linear rela-
tionship between the days with above zero temperatures and
the melting of ice or snow [8]. Hence, it is promising to
apply DL methods, such as nonlinear neural networks (NNs)
or classical machine learning (ML) models, such as random
forest (RF), as a statistical method to predict glacier MBs.
However, these models use data based on in situ measure-
ments (e.g., using ablation stakes) or remote-sensed data (e.g.,
using digital elevation model (DEM) differencing) [9], [10].
Both the approaches have nonnegligible uncertainties due to
measurement errors, sampling biases, or shortcomings in the
methodology. For example, the in situ measurements have
an accuracy typically lying between 0.1-m water equivalent
(w.e.) and 0.6-m w.e. [11]. Thus, MB models are trained with
noisy labels, yet should ideally make noise-free predictions.
Uncertainty quantification (UQ) methods could solve this
issue, by modeling the data noise and the model uncertainty,
and thereby disentangling them from the mean predictions.

ML has recently become popular for MB modeling: [7]
projects the 21st-century glacier evolution in the French Alps
with a standard multilayer perceptron (MLP) model for MB
as a better alternative to linear regression (LR); [12] models
winter point MBs using gradient boosting regressor (GBR);
[13] estimates annual point MBs using four different methods,
i.e., support-vector machine (SVM), RF, GBR, and MLP.
None of these studies models any uncertainty source and
only uses the testing errors as a quality indicator. Given that
glaciers are critical components in the Earth system and a
significant percentage of the world’s population (∼22%) is
relying on their water storage capacity [2], if policy makers
are to make decisions based on predictions obtained from
ML/DL methods, then it is paramount that they are not just
a black-box tool but provide reliable uncertainty estimates.
We aim to bridge this gap, by coupling NNs with differ-
ent UQ methods for MB prediction and investigating their
behavior with respect to label noise, by making the following]
contributions.
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1) We provide a dataset for MB regression suitable for
studying UQ methods.

2) By systematically adding label noise, we compare var-
ious models (LR, RF, and six MLP versions coupled
with different UQ components) with respect to their
predictive performance, the quality of the UQ estimates,
and their robustness against noisy labels.

II. DATASET

There are various limitations for datasets of MB recon-
structions. For in situ measurements, these include limited
annual glacier-wide observations, e.g., the world glacier mon-
itoring service (WGMS) [14]—a database gathering all in situ
measurements—contains less than 500 glaciers, which is con-
siderably less than the almost 200 000 glaciers worldwide [15].
In addition, there are uncertainties such as measurement
accuracy, the distribution of the ablation stakes or snow pits,
and the interpolation method, which are glacier-specific and
difficult to estimate [11]. For MB estimates based on remote
sensing techniques, an advantage is the increased coverage,
and various approaches to estimate glacier MB have been
proposed (see Table 3 from [10]). However, there are also
sources of uncertainties (e.g., the volume-to-mass conversion)
and discrepancies between derived MB estimates [10]. In addi-
tion, geodetic estimates at glacier level are usually available
as multiannual averages, thus limiting their use for calibrating
annual/seasonal models [10]. Thus, we use MB reconstructions
instead of measurements to investigate the potential of ML and
DL models for annual glacier MB modeling.

A. Dataset Construction

We use the open global glacier model (OGGM) [16],
an open-source framework for glacier modeling, to reconstruct
the annual MBs of the 1000 largest glaciers in Central Europe
(out of 3927, cf. [15]), which cover about 90% of the total
glaciated area in the region. The MB model used in OGGM
requires temperature and precipitation as drivers [17] which
are obtained from [18]. OGGM calibrates its parameters using
the 20 years average MBs from [19]. We limit the analysis to
the same 20-year period (i.e., 1999 − 2019), resulting in a
total of 20 ∗ 1000 = 20 000 data entries. As inputs, we use
the same meteorological drivers (i.e., monthly temperature and
precipitation averages) as OGGM, as well as six topograph-
ical features (area, minimum, maximum and mean elevation,
slope, aspect—sine & cosine), resulting in a 31-D input. The
topographical features are added to compensate for the fact
that OGGM estimates the MB in a pointwise manner, along
multiple lines distributed over a glacier (called flow lines [16]),
whereas in our approach we train a glacierwide MB model.

B. Label Noise Injection

The reconstructed MBs have a mean of −0.73-m w.e,
reflecting the observed mass loss over the past two
decades [19], and a standard deviation σdata ≈ 0.78-m w.e. We
inject Gaussian noise in the labels and build five scenarios
denoted by z = znoise, znoise ∈ {0.1, 0.2, . . , 0.5}, where znoise
controls the noise values η relative to σdata: η ∼ N (0, σ 2

noise)

where σnoise = znoise · σdata. This results in a noise standard

deviation varying from 0.08- to 0.39-m w.e., similar to the
range of the errors estimated for the in situ measured data [11].
Noise-free labels are denoted by z = 0.0. Given that the
region we cover in our dataset is relatively small, we found
that a Gaussian homoscedastic noise model is a reasonable
choice, as it approximately matches the estimated errors of
the observed MBs used for calibrating OGGM [19]. A more
detailed explanation and limitations of this choice are provided
in the Supplementary. Another reason is that the focus of our
study is on investigating whether coupling the models with
UQ components improves their robustness against label noise,
making use of the total predictive uncertainties rather than
focusing on the aleatoric uncertainty alone.

III. METHODS

A. Brief Introduction of Methods

Given the set of input–target pairs from our dataset,
Dtrain = {(xi , yi )}

K
i=1}, the task of the models is to predict a

target y⋆
∈ Y given an input x⋆

∈ X such that the loss objec-
tive between the predictions and targets is minimized over all
the training points. The model can be regarded as a function
fθ , parameterized by weights θ , which maps inputs x directly
to targets y ∈ Y , fθ : X → Y or to a probability distribution,
fθ : X → P(Y ) such that fθ (x⋆) = pθ (x⋆) ∈ P(Y ).

In the following, we briefly describe the eight models used,
which include an LR model, an RF Regressor, and five variants
of NNs built upon an MLP. A more detailed description is
provided in the supplementary material.

Linear Regression: standard multi-LR model used as base-
line, to support the claim that nonlinear models are more
suitable for glacierwide MB modeling.

Random Forest: introduced by Breiman [20], it consists of
training randomized decision trees using bootstrapping and
then aggregate the predictions by averaging them. A review
of RF as a powerful tool for classification and regression is
provided in [21]. We moreover consider the variance of the
predictions as a measure of predictive uncertainty.

Multilayer Perceptron: a simple fully connected network
with two hidden layers and a nonlinear activation function,
used as baseline.

Gaussian MLP (MLP+NLL): a deterministic model that
predicts the parameters of a Gaussian distribution

fθ (x⋆) = (µθ (x⋆), σθ (x⋆)) (1)

in a single forward pass, where standard deviations σθ (x⋆)

can be used as a measure of data uncertainty. This is achieved
by extending the output of the previous architecture to two
dimensions and train it with the negative log-likelihood (NLL)
of a Gaussian as a loss objective [22].

MC-Dropout (MLP+MCD): an approximate Bayesian
method with sampling, as in [23]. A fixed dropout rate p
is added, meaning that the weights are randomly set to zero
during each forward pass with the probability p. This models
the network weights and biases as a Bernoulli distribution
with dropout probability p. We also consider combining this
method with the previous model (Gaussian MLP), as in [22],
aiming for disentangling the data and model uncertainties,
abbreviated as MLP+NLL+MCD.
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Fig. 1. Robustness evaluation: Test performance (MAE) for all the models (except LR) trained on multiple levels of noise and evaluated on clean labels.

TABLE I
ACCURACY METRICS: PERFORMANCE SCORES (µ ± σ ) EVALUATED

ON CLEAN LABELS FOR THE MODELS TRAINED WITH

AN AVERAGE AMOUNT OF NOISE (z = 0.3)

Deep Ensembles [Ensemble (MLP)]: introduced in [24],
Deep Ensembles approximate a posterior distribution over the
model weights with a Gaussian mixture model over the output
of separately initialized and trained networks. Wilson and
Izmailov [25] showed that Deep Ensembles can be interpreted
as a Bayesian method. In addition, each ensemble member can
be a Gaussian MLP, denoted as Ensemble (MLP+NLL).

B. Metrics

Regression tasks are commonly evaluated by accuracy met-
rics such as root mean squared error (RMSE), mean absolute
error (MAE), or coefficient of determination (R2). A better
quality of prediction is indicated by a lower RMSE and
MAE and an R2 score close to 1.0. However, these measures
only characterize the error between point predictions and
available targets. To compare the predictive uncertainties to
the target distribution, we need additional metrics, such as
proper scoring rules [26]. We consider the NLL of a Gaussian
as a proper scoring rule [26]. We also report the miscalibration
area, where a lower miscalibration area indicates a better fit
of the predictive uncertainties to the true target distribution.
To quantify the overall confidence of a model in a single
metric, we consider sharpness which computes the mean of
the predictive uncertainties. We use [27] for computing these
metrics.

IV. EXPERIMENTAL RESULTS

A. Evaluation Details

From the dataset, we keep 20% of the glaciers for testing
and the remaining are split at glacier level into training and

validation (90% and 10%, respectively). To reduce the impact
of randomness in our results, we repeat the experiments ten
times with different data splits and different model initializa-
tions. The hyperparameters of each method are provided in
the Supplementary.

B. Evaluation of Mean Predictions

Controlling the label noise allows us to compare the models
with respect to robustness, by analyzing which models can still
predict the true labels accurately when trained with increasing
label noise.

In Table I, we show the MAE, RMSE, and R2 on clean
labels for all the models trained with the noisy labels with
z = 0.3. LR performs the worst with a significant gap
compared with the other models. The two MLP ensemble
versions perform the best on all the metrics, closely followed
by RF. For R2 scores, we observe that all the methods (except
LR) attain values in [85%, 90%], the Ensemble (MLP+NLL)
model outperforming RF only by 1.8%. The tables with the
accuracy metrics for the other noise levels are included in the
supplementary material and show the same trends. We also
included the mean bias error (MBE) as an additional metric,
which is in general very small (less than 3-cm w.e.), with little
variance across methods and no correlation to the noise level.

We investigate the robustness to training on increasing label
noise by assessing the MAE of the models. Fig. 1 shows
the MAE distribution of the ten differently initialized models.
Taking into account the variance due to initialization, the two
MLP ensemble methods still perform best, followed by RF.
As expected, the MAE increases with increasing label noise
for all the models. Table I shows that the variance of the results
is comparable across methods.

To assess which models are affected the most by the
increasing noise, we show the average MAE scores obtained
when training on clean labels as a baseline and compute
the change (expressed in percentages) when training on
noisy labels in Table II. All the models show increasing
MAE with increasing noise, reaching up to 16.5% increase
(MLP+NLL for z = 0.5). The Ensemble (MLP) and Ensemble
(MLP+NLL) increase only by 3.6% and 5.4%, respectively,
whereas the others exceed +10%. The models trained with
NLL (i.e., MLP+NLL and MLP+NLL+MCD) are relatively
more affected, reaching +10% already at z = 0.4. This is also
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TABLE II
RELATIVE PERFORMANCE DIFFERENCE: CHANGE IN AVERAGE

MAE SCORES, EVALUATED ON CLEAN LABELS, WHEN

TRAINING ON NOISY LABELS (z ≥ 0.1) COMPARED

WITH TRAINING ON CLEAN LABELS (z = 0.0)

reflected when comparing the two MLP Ensemble versions,
where Ensemble (MLP) performs better.

C. Evaluation of Predictive Uncertainties

In Section IV-B, we showed that coupling the models with
uncertainty estimation components helps improve their robust-
ness and yields improved accuracy. Yet, in many applications
it also important to provide uncertainty estimates, e.g., to make
risk assessments or withdraw from predictions that have high
uncertainty. In a real-world scenario, one does not have access
to clean labels which we previously exploited for robustness
evaluation. In this section, we investigate how well the UQ
methods capture the uncertainties, using the metrics described
in Section III-B evaluated with the noisy labels. Moreover,
we assess whether these methods provide useful uncertainties
using selective prediction, as introduced in [28]. Here, samples
with a predictive uncertainty above a given threshold are
omitted from prediction and, e.g., referred to an expert or a
different method. If larger uncertainties are correlated with
worse predictions, this increases overall accuracy.

Table III shows miscalibration area, sharpness, and
NLL scores, obtained for the average noise case (z =

0.3). Compared with the previous results, discrepancies
between the methods are higher. The Ensemble (MLP+NLL)
model obtains a lower miscalibration area compared with
Ensemble (MLP) (which performs the worst), closely followed
by RF. The sharpness is much smaller for the standard MLP
ensemble. There are large variations for the NLL scores
and the Ensemble (MLP+NLL) performs again the best, with
RF performing similarly and Ensemble (MLP) the worst.
The tables with the UQ metrics for the other noise levels
are included in the supplementary material and show the
same trends. For a more detailed analysis, a figure of the
calibration curves for all the noise levels is also included
in the supplementary, where it can be observed that the
Ensemble (MLP) model is highly overconfident, reflected by
the high miscalibration area in Table III.

Finally, we assess whether the uncertainty scores can
improve the accuracy with selective prediction. Fig. 2 shows
the average performance (MAE), of each model against the
coverage percentage, i.e., the percentage of samples with
the lowest predictive uncertainties, the remaining ones being
dropped. Ideally, we want to see a better performance when
using the least uncertain samples but we can see that only
the ensemble methods (including RF) have this behavior.

TABLE III
UQ METRICS: (µ ± σ ) FOR THE MODELS TRAINED AND EVALUATED

ON THE NOISY LABELS WITH z = 0.3

Fig. 2. Selective prediction: Test performance (MAE) on clean labels
averaged for all the data points which have the estimated total uncertainty
score below a certain threshold (x-axis). The models are trained on the noisy
labels with z = 0.3.

Selective prediction applied to the models trained on the
other noise levels shows similar trends and is included in the
supplementary material.

V. DISCUSSION

The results described in Section IV-B indicate that a linear
model is not sufficient for glacier-wide MB modeling, thus
suggesting that the problem is nonlinear, as found in previous
studies [6], [29]. Among the nonlinear methods, we observe
that the top performing ones are the ensemble methods, includ-
ing RF. The fact that Ensemble (MLP+NLL) yields the overall
best results provides evidence that coupling the model with this
aleatoric uncertainty component also improves predictions.
However, training a RF remains easier and faster, which makes
it also a good candidate, with a relatively small performance
gap compared with Ensemble (MLP+NLL). We also found RF
to be less sensitive to the choice of hyperparameters compared
with the MLPs; probably also explained by the larger ensemble
size (up to 500 trees were used versus only ten for the MLPs).

When analyzing the influence of increasing the label noise
on performance, ensembles of MLPs are again favored, as their
performance degrades slower compared with the other meth-
ods. Here, the gap between RF and the ensembles of MLPs is
higher, which indicates RF is more prone to overfitting on our
dataset. In the large-scale study from [30], tree-based models
were found to perform better on tabular data than NNs, as they
can approximate irregular functions whereas NNs tend to be
biased toward smoother solutions. However, in our context,
this inductive bias could be beneficial when dealing with
large amounts of noise, potentially making NNs less prone
to overfitting, an aspect which was previously investigated for
classification tasks in [31].

Concerning UQ (Section IV-C), the complementary met-
rics we used (i.e., calibration, sharpness and NLL) reveal
that Ensemble (MLP+NLL) matches our dataset distribution
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the best. Ensemble (MLP) is overconfident, which explains
the comparably low sharpness. This indicates that predict-
ing the parameters of a Gaussian enables disentangling
the model and data uncertainty, shown in the figures of
model and data uncertainty in the supplementary material.
The RF also provides relatively well calibrated predictions.
Furthermore, the selective prediction results also indicate
that the three ensemble methods perform the best. The
Ensemble (MLP+NLL) is slightly outperforming, as its aver-
age MAE stays relatively low until it reaches a significant
coverage (>= 75%), thus making it a good candidate in
practice. The nonensemble models perform in general worse,
both from the perspective of predictive power and uncertainty
estimation.

VI. CONCLUSION

We introduce a simple and relatively small dataset for an
important regression task in glacier modeling: predicting the
annual MB using meteorological and topographical drivers.
We then compare various methods (LR, RF, MLPs, and
ensembles of MLPs) on how they perform when trained with
noisy labels while still evaluating them on the clean labels. The
ensemble methods performed the best (including RF), being
more robust when increasing the label noise. When coupling
the ensemble of MLPs with a Gaussian output, thus explicitly
modeling the data uncertainty, the performance increases and
the predictions become significantly better calibrated. The
uncertainties from the ensemble methods can also be used for
selective prediction, leading to more accurate and reliable MB
predictions while still keeping a significant coverage.

We would therefore recommend the ensemble methods
for glacier-wide MB modeling to the cryosphere community,
in particular the Ensemble (MLP+NLL) version. However,
these models are sensitive to the hyperparameters, so signif-
icant effort should be allocated to tuning these. From this
perspective, RF was more robust but we would still recom-
mend performing HPO: we observed that the final models
grow smaller trees when having a large amount of noise,
an indicator that HPO can prevent overfitting.

One promising extension of this study is to inject noise in
the input data based on certain features (i.e., a heteroscedastic
noise model) which is closer to the real setup, as for instance,
the remote-sensing-based MBs from [19] have larger errors
for small glaciers.

REFERENCES

[1] B. Marzeion et al., “Partitioning the uncertainty of ensemble projections
of global glacier mass change,” Earth’s Future, vol. 8, no. 7, Jul. 2020,
Art. no. e2019EF001470.

[2] W. W. Immerzeel et al., “Importance and vulnerability of the world’s
water towers,” Nature, vol. 577, pp. 364–369, Dec. 2020.

[3] D. R. Rounce et al., “Global glacier change in the 21st century: Every
increase in temperature matters,” Science, vol. 379, no. 6627, pp. 78–83,
Jan. 2023.

[4] J. G. Cogley et al., “Glossary of glacier mass balance and related
terms,” Int. Hydrol. Programme, Tech. Rep., 2010. [Online]. Available:
https://unesdoc.unesco.org/ark:/48223/pf0000192525

[5] S. Bojinski, M. Verstraete, T. C. Peterson, C. Richter, A. Simmons,
and M. Zemp, “The concept of essential climate variables in support of
climate research, applications, and policy,” Bull. Amer. Meteorol. Soc.,
vol. 95, no. 9, pp. 1431–1443, Sep. 2014.

[6] D. Steiner, A. Walter, and H. J. Zumbühl, “The application of a non-
linear back-propagation neural network to study the mass balance of
grosse aletschgletscher, Switzerland,” J. Glaciol., vol. 51, no. 173,
pp. 313–323, 2005.

[7] J. Bolibar, A. Rabatel, I. Gouttevin, H. Zekollari, and C. Galiez,
“Nonlinear sensitivity of glacier mass balance to future climate change
unveiled by deep learning,” Nature Commun., vol. 13, no. 1, p. 409,
Jan. 2022.

[8] R. Hock, “Temperature index melt modelling in mountain areas,”
J. Hydrol., vol. 282, nos. 1–4, pp. 104–115, Nov. 2003.

[9] J. Graham Cogley, “Geodetic and direct mass-balance measurements:
Comparison and joint analysis,” Ann. Glaciol., vol. 50, no. 50,
pp. 96–100, 2009.

[10] E. Berthier et al., “Measuring glacier mass changes from space—A
review,” Rep. Prog. Phys., vol. 86, no. 3, 2023, Art. no. 036801.

[11] M. Zemp, M. Hoelzle, and W. Haeberli, “Six decades of glacier
mass-balance observations: A review of the worldwide moni-
toring network,” Ann. Glaciol., vol. 50, no. 50, pp. 101–111,
2009.

[12] M. Guidicelli, M. Huss, M. Gabella, and N. Salzmann, “Spatio-temporal
reconstruction of winter glacier mass balance in the alps, Scandinavia,
central Asia and Western Canada (1981–2019) using climate reanalyses
and machine learning,” Cryosphere, vol. 17, no. 2, pp. 977–1002,
Mar. 2023.

[13] R. Anilkumar, R. Bharti, D. Chutia, and S. P. Aggarwal, “Mod-
elling point mass balance for the glaciers of the central European
Alps using machine learning techniques,” Cryosphere, vol. 17, no. 7,
pp. 2811–2828, Jul. 2023.

[14] WGMS, Fluctuations of Glaciers Database, World Glacier Monitoring
Service (WGMS), Zurich, Switzerland, 2022, doi: 10.5904/wgms-fog-
2022-09.

[15] W. T. Pfeffer et al., “The Randolph glacier inventory: A glob-
ally complete inventory of glaciers,” J. Glaciol., vol. 60, no. 221,
pp. 537–552, 2014.

[16] F. Maussion et al., “The open global glacier model (OGGM) v1. 1,”
Geosci. Model Develop., vol. 12, no. 3, pp. 909–931, 2019.

[17] B. Marzeion, A. H. Jarosch, and M. Hofer, “Past and future sea-level
change from the surface mass balance of glaciers,” Cryosphere, vol. 6,
no. 6, pp. 1295–1322, Nov. 2012.

[18] M. Cucchi et al., “WFDE5: Bias-adjusted ERA5 reanalysis data for
impact studies,” Earth Syst. Sci. Data, vol. 12, no. 3, pp. 2097–2120,
Sep. 2020.

[19] R. Hugonnet et al., “Accelerated global glacier mass loss in the
early twenty-first century,” Nature, vol. 592, no. 7856, pp. 726–731,
Apr. 2021.

[20] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32,
Oct. 2001.

[21] G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 25,
no. 2, pp. 197–227, Jun. 2016.

[22] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian deep
learning for computer vision?” in Proc. NeurIPS, 2017, pp. 5574–5584.

[23] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” in Proc. ICML, 2016,
pp. 1050–1059.

[24] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scal-
able predictive uncertainty estimation using deep ensembles,” in Proc.
NeurIPS, 2017, pp. 6402–6413.

[25] A. G. Wilson and P. Izmailov, “Bayesian deep learning and a
probabilistic perspective of generalization,” in Proc. NeurIPS, 2020,
pp. 4697–4708.

[26] T. Gneiting and A. E. Raftery, “Strictly proper scoring rules, prediction,
and estimation,” J. Amer. Stat. Assoc., vol. 102, no. 477, pp. 359–378,
Mar. 2007.

[27] Y. Chung, I. Char, H. Guo, J. Schneider, and W. Neiswanger, “Uncer-
tainty toolbox: An open-source library for assessing, visualizing,
and improving uncertainty quantification,” 2021, arXiv:2109.10254.
[Online]. Available: https://arxiv.org/abs/2109.10254

[28] Y. Geifman and R. El-Yaniv, “Selective classification for deep neural
networks,” in Proc. NeurIPS, 2017, pp. 4878–4887.

[29] J. Bolibar, A. Rabatel, I. Gouttevin, C. Galiez, T. Condom, and
E. Sauquet, “Deep learning applied to glacier evolution modelling,”
Cryosphere, vol. 14, no. 2, pp. 565–584, Feb. 2020.

[30] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based
models still outperform deep learning on typical tabular data?” in Proc.
NeurIPS, 2022.

[31] D. Rolnick, A. Veit, S. Belongie, and N. Shavit, “Deep learning is robust
to massive label noise,” 2017, arXiv:1705.10694.

http://dx.doi.org/10.5904/wgms-fog-2022-09
http://dx.doi.org/10.5904/wgms-fog-2022-09

