elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Guiding real-world reinforcement learning for in-contact manipulation tasks with Shared Control Templates

Padalkar, Abhishek und Quere, Gabriel und Raffin, Antonin und Silverio, Joao und Stulp, Freek (2024) Guiding real-world reinforcement learning for in-contact manipulation tasks with Shared Control Templates. Autonomous Robots, 48. Springer. doi: 10.1007/s10514-024-10164-6. ISSN 0929-5593.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
3MB

Offizielle URL: https://link.springer.com/article/10.1007/s10514-024-10164-6

Kurzfassung

The requirement for a high number of training episodes has been a major limiting factor for the application of Reinforcement Learning (RL) in robotics. Learning skills directly on real robots requires time, causes wear and tear and can lead to damage to the robot and environment due to unsafe exploratory actions. The success of learning skills in simulation and transferring them to real robots has also been limited by the gap between reality and simulation. This is particularly problematic for tasks involving contact with the environment as contact dynamics are hard to model and simulate. In this paper we propose a framework which leverages a shared control framework for modeling known constraints defined by object interactions and task geometry to reduce the state and action spaces and hence the overall dimensionality of the reinforcement learning problem. The unknown task knowledge and actions are learned by a reinforcement learning agent by conducting exploration in the constrained environment. Using a pouring task and grid-clamp placement task (similar to peg-in-hole) as use cases and a 7-DoF arm, we show that our approach can be used to learn directly on the real robot. The pouring task is learned in only 65 episodes (16 min) and the grid-clamp placement task is learned in 75 episodes (17 min) with strong safety guarantees and simple reward functions, greatly alleviating the need for simulation.

elib-URL des Eintrags:https://elib.dlr.de/206235/
Dokumentart:Zeitschriftenbeitrag
Titel:Guiding real-world reinforcement learning for in-contact manipulation tasks with Shared Control Templates
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Padalkar, AbhishekAbhishek.Padalkar (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Quere, GabrielGabriel.Quere (at) dlr.dehttps://orcid.org/0000-0002-1788-3685NICHT SPEZIFIZIERT
Raffin, AntoninAntonin.Raffin (at) dlr.dehttps://orcid.org/0000-0001-6036-6950NICHT SPEZIFIZIERT
Silverio, Joaojoao.silverio (at) dlr.dehttps://orcid.org/0000-0003-1428-8933NICHT SPEZIFIZIERT
Stulp, FreekFreek.Stulp (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:4 Juni 2024
Erschienen in:Autonomous Robots
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:48
DOI:10.1007/s10514-024-10164-6
Verlag:Springer
ISSN:0929-5593
Status:veröffentlicht
Stichwörter:Guided reinforcement learning, Safe robot control, Robot learning, Constraint based learning
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Synergieprojekt Factory of the Future Extended
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik
Hinterlegt von: Padalkar, Abhishek
Hinterlegt am:05 Sep 2024 12:34
Letzte Änderung:09 Sep 2024 10:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.