Autonomous Robots (2024) 48:12
https://doi.org/10.1007/5s10514-024-10164-6

f')

Check for
updates

Guiding real-world reinforcement learning for in-contact manipulation
tasks with Shared Control Templates

Abhishek Padalkar' - Gabriel Quere' - Antonin Raffin' - Joao Silvério® - Freek Stulp’

Received: 23 August 2023 / Accepted: 20 April 2024 / Published online: 4 June 2024
© The Author(s) 2024

Abstract

The requirement for a high number of training episodes has been a major limiting factor for the application of Reinforcement
Learning (RL) in robotics. Learning skills directly on real robots requires time, causes wear and tear and can lead to damage
to the robot and environment due to unsafe exploratory actions. The success of learning skills in simulation and transferring
them to real robots has also been limited by the gap between reality and simulation. This is particularly problematic for
tasks involving contact with the environment as contact dynamics are hard to model and simulate. In this paper we propose
a framework which leverages a shared control framework for modeling known constraints defined by object interactions
and task geometry to reduce the state and action spaces and hence the overall dimensionality of the reinforcement learning
problem. The unknown task knowledge and actions are learned by a reinforcement learning agent by conducting exploration
in the constrained environment. Using a pouring task and grid-clamp placement task (similar to peg-in-hole) as use cases and
a 7-DoF arm, we show that our approach can be used to learn directly on the real robot. The pouring task is learned in only
65 episodes (16 min) and the grid-clamp placement task is learned in 75 episodes (17 min) with strong safety guarantees and
simple reward functions, greatly alleviating the need for simulation.

Keywords Guided reinforcement learning - Safe robot control - Robot learning - Constraint-based learning

1 Introduction

The potential of reinforcement learning (RL) in solving high-
dimensional, highly non-linear problems is evident from its
super-human level performance on Atari games (Mnih et al.,
2013) and in mastering Go (Silver et al., 2016). RL can per-
form at its full potential when skills are learned from scratch,
as evidenced by the example of AlphaGo Zero (Silver et al.,

B Abhishek Padalkar
Abhishek.Padalkar@dlr.de

Gabriel Quere
Gabriel.Quere @dlIr.de

Antonin Raffin
Antonin.Raffin@dIr.de
Jodo Silvério
Joao.Silverio@dlr.de

Freek Stulp
Freek.Stulp@dlr.de

1 Robotics and Mechatronics Center (RMC), German
Aerospace Center (DLR), Miinchener Str. 20, 82234 Wefling,
Germany

2017) (trained from scratch) outperforming AlphaGo (Silver
et al., 2016) (pretrained with human games).

In robotics, RL has piqued the interest of researchers by
learning intricate and impressive motor skills such as jug-
gling (Ploeger et al., 2020), ball-in-cup (Schwab et al., 2019),
in-hand manipulation (Andrychowicz et al., 2020), pick-and-
place (Levineetal.,2018), or locomotion over highly variable
terrain (Lee et al., 2020a). Although executing episodes on
real robots is much more time-consuming than simulating
Go games, it is still feasible and plays an important role in
the acquisition of complex robot motor skills. However, the
requirement for a large number of episodes has limited the
application of RL in real-world object manipulation. Learn-
ing in simulation and then transferring skills to the real robot
is limited by the accuracy of the simulation. Such limita-
tions become even more apparent in tasks involving contacts,
which are discussed in detail by Elguea-Aguinaco et al.
(2023). In this article, we present a framework which enables
learning directly on the real robot, safely and efficiently.

One of the aspects that sets human manipulation skills in
daily activities (e.g. pouring a drink, opening a door) apart
from the intricate motor skills mentioned before is that these

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-024-10164-6&domain=pdf

12 Page2of17

Autonomous Robots (2024) 48:12

activities often involve interactions with objects that have a
dedicated purpose (e.g. bottles, glasses, doors, sockets). Such
objects are specifically designed with purposeful interactions
in mind, i.e. they afford such interactions (Gibson, 1979;
Leidner et al., 2012; Khetarpal et al., 2020). We consider it
inefficient to use RL to re-learn such interactions—and the
constraints arising from them—from scratch in thousands of
episodes. What is known should not be learned.

In other words, the robot should not use RL to learn what
to do with an object—this is already known and intrinsic to
the object—but rather how to do it well, i.e. efficiently and
without making many mistakes. This is especially true for
tasks involving contact, such as insertion tasks, where the
goal state is known but optimal behaviors (e.g. interaction
forces) are difficult both to hardcode and demonstrate. In
these cases, specifying partial constraints can greatly reduce
the number of episodes needed to learn the task.

This stance raises the question of how such purposeful
interactions and constraints involved should be represented
and incorporated in the RL process. In our research on shared
control (Quere et al., 2020), we have serendipitously discov-
ered that representations for shared control are also ideally
suited for guiding RL, for several reasons. First, shared
control aims at enabling users to control high-dimensional
robotic systems with low-dimensional input commands. For
RL, this approach substantially reduces the action space. Sec-
ond, user preferences vary, and shared control must foster
agency and empowerment by providing freedom of move-
ment within the reduced action space. For RL, this means
that there is room for exploration within such representa-
tions. Third, shared control often limits the range of motion
for safety reasons. For RL, this also means that exploration
becomes safe. This has the following advantages:

1. Safer learning, as constraints are enforced during learn-
ing;

2. Faster learning, as constraints need not be learned;

3. Simplified reward function design, as constraints need no
longer be implicitly represented in the reward.

Together, these advantages greatly facilitate skill acquisition
on real robots via RL. Indeed, our key message in this article
is that representing constraints implicitly in shaped reward
functions, can require as much human design effort as explic-
itly modeling these constraints, but that the latter leads to
safer and faster learning.

1.1 Contributions
In this paper, we investigate how RL can be guided by
our framework for shared control—Shared Control Tem-

plates (SCTs) (Quere et al., 2020), see Sect. 3—thereby
making it safer and more efficient. As shown in Fig. 1, we

@ Springer

active
constraints

active
constraints

input
mapping

—
Shared Control Template
input
mapping

Shared Control Template
—

Reward
Function

Environment
at at It

User input device RL Agent

St

Fig. 1 In previous work, we developed Shared Control Templates
(SCTs) to support human users in executing tasks of daily living, such as
pouring liquids or opening drawers (Quere et al., 2020). In this context
(left illustration), users provide commands to control the robot, which
has many degrees of freedom. Efficiency and safety is improved with
Input Mappings—which map low-dimensional user commands a to the
many degrees of freedom of the robot H££—and Active Constraints—
which limit the range of motion, for instance to avoid collisions.
In this work, we use SCTs to analogously achieve efficiency and safety
in RL (right illustration). We also demonstrate how transition functions
in the SCT’s Finite State Machine (not depicted above; see Fig. 4 for
details) can be used to automatically generate shaped reward functions
and further speed up learning. The resulting framework is called Rein-
forcement Learning with Shared Control Templates (RL-SCT). RL-SCT
is evaluated on the two tasks illustrated in Fig. 2

replace the human user by an RL agent to complete the task
autonomously. Our method, Reinforcement Learning with
Shared Control Templates (RL-SCT), introduced in Sect. 4,
allows us to model task space constraints and knowledge
about the motion required for task completion flexibly, learn
the complete task model from the robot-environment interac-
tions, and optimize secondary costs associated with quality
of the task. The main contributions of this paper are:

1. A framework that leverages task knowledge represented
in a shared control method to make reinforcement learning
in the real world possible by explicitly constraining both
state and actions spaces,

2. an approach to simplify the generation of shaped rewards
based on prior information about task progress and com-
pletion encoded in SCTs, and

3. showing that applying SCTs to RL leads to more sample
efficient and safer learning on a real robot even for tasks
involving contact with environment (Fig. 2).

Our approach is validated using a simulated KUKA TTWA
robot on a pouring task and DLR’s SARA robot on pouring
and grid-clamp insertion tasks, the latter requiring contacts
with the environment (Sect. 5). Our results show that RL-SCT
avoids unnecessary mistakes during the learning process and
enables faster learning for the tasks where the object inter-
action model is fully known. For tasks where only partial
interaction modeling is possible, e.g. tasks with contacts such

Autonomous Robots (2024) 48:12

Page3of17 12

(b) Grid-clamp insertion.

Fig. 2 Safer and more efficient RL with RL-SCT is demonstrated on
the SARA robot (Iskandar et al., 2020) on two tasks: pouring and grid-
clamp insertion. The latter involves contacts with the environment that
are typically difficult to model in simulation. Our approach allows the
robot to successfully learn the task while minimizing the interaction
forces

as the grid-clamp insertion, we show that RL-SCT makes
learning faster, safer—both by avoiding collisions and mini-
mizing interaction forces when they are required to complete
the task—and hence possible directly on the real robot.

2 Related work

As contact dynamics are often difficult to model, tasks involv-
ing contacts are interesting for model-free RL (Buchli et
al., 2011; Kalakrishnan et al., 2011). However, learning in-
contact tasks with RL is challenging, as exploration can
be unsafe due to collisions, and the number of episodes
required to learn a task can be prohibitively high. Simula-
tion and sim-to-real methods resolve these issues, but come
with their own set of challenges when simulating in-contact
tasks (Salvato et al., 2021). RL-SCT enables RL to be per-
formed directly on the real robot, by ensuring safety through
Active Constraints, and improving efficiency by providing
low-dimensional action spaces and generating shaped reward
functions.

In this section, we first describe RL approaches that are
conceptually similar to (components of) SCT-RL. In Sect.
2.5, we then describe learning approaches that have been
applied to in-contact manipulation on real robots.

2.1 Safe and efficient reinforcement learning with
state-dependent action masking

InReinforcement Learning, Markov Decision Process (MDP)
is formalized as (S, A, T, R), with state space S, action space
A, transition function 7', and reward function R. To speed
up learning, several approaches to reduce and modify these
spaces and functions have been proposed, including action
masking, action manifolds, and reward shaping.

To improve the safety during exploration and/or to speed
up learning, various approaches have been proposed that con-
strain the actions that can be performed in specific states. An
example in the discrete domain is action masking (Huang &
Ontaiién, 2020), where the set of actions A;i that is known
to be invalid or suboptimal in certain states is excluded from
the action space in those states, i.e. Agi C A, where Agi
denotes the set of masked actions at s;. As fewer actions
need to be explored, action space shaping typically speeds
up learning (Kanervisto et al., 2020).

In robotics, similar concepts have been explored to also
ensure safety during exploration. Cheng et al. (2019) pro-
posed to use Control Barrier Functions (CBFs) (Taylor et
al., 2020) to avoid unsafe states for the robot while an RL
agent explored the state-action space.

Liu et al. (2022) demonstrate that a constrained RL
problem can be converted into an unconstrained one by per-
forming RL on the tangent space of the constrained manifold.
Their results obtained in simulation are promising, but the
approach is limited to problems where the constraints are dif-
ferentiable, which restricts its application domain. RL-SCT
is free of differentiability assumptions, making it flexible by
design.

2.1.1 Affordances in RL

Khetarpal et al. (2020) apply the theory of affordances (Gib-
son, 1979) to RL, which allows faster learning by action
space reduction and precise learning of transition models.
First, ‘intent’ is defined as the desired outcome of an action.
Affordances then capture the subset of the state-action space
where the intent is achieved. Such subset represents a par-
tial model of the environment. Intents and affordances are a
principled two-step procedure for defining state-dependent
actions masks. This approach is also noteworthy for com-
bining action masking with a decomposition of the overall
policy into different intents and affordances, see also Sect.
2.3. Within RL-SCT approach, each state can be considered
to have an intent for a subphase of the task, and the Active
Constraints implement the continuous action masking. SCT-
RL adds to this the Input Mappings, the automatic generation
of shaped rewards, and the representation of subtasks in a
finite state machine. The method in (Khetarpal et al., 2020)
is demonstrated on grid worlds and continuous 2D planes,

@ Springer

12 Page4of17

Autonomous Robots (2024) 48:12

and has, to the best of our knowledge, not yet been scaled up
to the high-dimensional action spaces of robots.

Affordance-based learning has also been used to gener-
ate high-level skill sequences for domestic tasks (Cruz et al.,
2014, 2016, 2018). A human guides the agent with instruc-
tions adhering to the affordances. In SCT-RL, we rather
consider low-level actions that control end-effector positions,
for instance for in-contact manipulation.

2.2 Efficient reinforcement learning with action
manifolds

An alternative to defining state-dependent action mask-
ing/constraints is to define a reduced action space for the
entire state space.

Lucketal. (2014) combine policy search and dimensional-
ity reduction in an expectation-maximization framework and
use probabilistic PCA for obtaining a latent space during the
learning process.

Kolter et al. (2007) present a method that uses a (possibly
inaccurate) simulator to identify a low-dimensional subspace
of policies. Aninstance on areal system is learned using these
low-dimensional policies using much less data.

Padalkar et al. (2020a, 2020b) proposed a partial task
specification in the robot task space using the Task Frame
Formalism (Mason, 1981; Bruyninckx & De Schutter, 1996),
learning the remaining specification of the task with RL. This
method successfully demonstrated a significant reduction in
robot-environment interactions when cutting vegetables with
alight-weight robot. Although this work ensures safety in the
directions in which motion is fully specified, it does not guar-
antee the safety in the directions explored by the RL policy,
a problem addressed in RL-SCT.

Reinhart and Steil (2015) propose a two step solution
with a skill memory, an organization of motion primi-
tives in low-dimensional, topology preserving embedding
space and policy search leveraging the low-dimensional skill
parameterization. Skill parameterization can be predefined or
automatically discovered with parameterized self-organizing
maps.

He and Ciocarlie (2022) present a framework that dis-
covers a synergy space and learns a multi-task policy that
operates on this low-dimensional action space. Learned syn-
ergies can be used across multiple manipulation tasks.

In this paper, we refer to action manifolds as Input Map-
pings, aterm used in SCTs due to their role in shared control,
where user inputs (e.g. through a joystick) are mapped to
robot actions (Dragan & Srinivasa, 2013).

Manifold learning has also been applied to reducing the
state space (rather than the action space as described above),
for instance using PCA and GPLVM (Bitzer et al., 2010;
Tosatto et al., 2021; Curran et al., 2016; Parisi et al., 2017). In
DeepRL this is known as state representation learning (Raf-

@ Springer

fin et al., 2019), and the automatic learning of the state space
representations is the main motivations for using DeepRL. A
full overview of this field is beyond the scope of this paper,
as our focus in this work is not on learning state space man-
ifolds.

2.3 RL with sequential tasks and/or task
decompositions

An early RL approach to representing subtasks is the options
framework, where the agent uses macro actions that span
multiple time steps to represent subpolicies for subtasks (Sut-
ton et al., 1999; Stolle & Precup, 2002). Our work differs in
that the subtasks are represented in the SCT, and the SCT is
part of the environment, rather than the agent. The RL agent
does not represent subpolicies or subtasks internally, as will
be highlighted in Fig. 4.

Daniel et al. (2013) propose an approach to learning
sequencing motor primitives while simultaneously improv-
ing individual motor primitives.

Kroemer et al. (2015) propose to learn a probabilistic mul-
tiphase model of the task, a motion primitive for each task
phase, and a RL policy for sequencing the motion primitives
that use the task model. Although these methods solve mul-
tiphase tasks; they do not take constraints in the environment
into account, and hence exploratory actions can lead the robot
into potential hazardous situations during the learning pro-
cess. In RL-SCT, we propose to learn a single policy for all
phases of the task, whereas the above-mentioned approaches
use different motion primitives for different phases.

Krishnan et al. (2019) propose an approach where inverse
RL learns subtasks with subgoals and local cost functions
from a latent space representation of demonstrations obtained
with unsupervised learning. Such latent space and decom-
posed representation is used to accelerate RL.

Koert et al. (2020) present an approach where a robot
learns and improves to combine skills for sequential tasks
with human input during learning to accelerate the learn-
ing. It is an interactive framework where the human advises
the robot on planned high-level action, provides feedback
on the outcome of the action, and provides subgoal rewards.
This approach uses human-guided RL for solving decision-
making problems while choosing predefined low-level poli-
cies, whereas we propose to learn control policies with RL
that generate inputs for underlying MDP simplified by SCTs
by incorporating the task knowledge.

Khetarpal et al. (2020) developed the theory of affordances
(Gibson, 1979) for RL agents, which allows faster learning by
action space reduction and precise learning of transition mod-
els. With intent defined as the desired outcome of an action,
affordances capture the subset of the state-action space where
the intent is achieved. Such subset represents a partial model
of the environment. In RL-SCT, each SCT-state models an

Autonomous Robots (2024) 48:12

Page50f17 12

intent and defines IM and AC to achieve the intent with state
dependent action space reduction.

2.4 Reward shaping

In reward shaping, a sparse terminal reward R is transformed
into a dense, immediate reward R’ by adding knowledge
about the task and its subphases (Ng et al., 1999). It does
not change S, A, or T. Shaped rewards are more informa-
tive, and thus speed up learning. In this paper, we argue that
action space shaping is more effective that reward shaping,
and contrary to common belief, often not more difficult to
design.

2.5 Reinforcement learning of manipulation tasks
with contacts

Zhao et al. (2022) presented an approach of meta-reinforcement

learning by encoding human demonstrations for different
tasks in a latent space and using the latent space variables
to generalize the RL policy for different types of insertion
tasks. The policy can be trained offline with data collected
from sources like human demonstrations, replay buffers from
previous experiments and data collected from hand-coded
solutions.

Vecerik et al. (2019) train a neural network to extract fea-
tures from images during insertion task, with the same neural
network being used to compute a binary reward. The fea-
tures are used as input to the RL policy. Critic and actor are
pre-trained to mimic human demonstrations. Davcheyv et al.
(2022) present an approach to learn insertion task by learn-
ing a residual policy to support an imitation learning policy
learned with Dynamic Motion Primitives. Kozlovsky et al.
(2022) presented an approach to learn asymmetric impedance
matrices to learn a policy in simulation and then transfer the
solution to the real robot. Lee et al. (2020b) combine an
RL policy with a model-based solution in the region where
the task model is uncertain to learn the insertion task with a
binary reward. The poses of the objects used as state are esti-
mated by a vision system. All the above approaches do not
include force measurements in the state and do not optimize
interaction forces while executing the task. We address this
limitation in RL-SCT by introducing interaction forces in the
agent state and a secondary cost in the reward to minimize
interaction forces.

Apolinarska et al. (2021) applied RL for assembly of tim-
ber joints. They use human demonstrations for initializing
the policy. The policy is learned in simulation with domain
randomization and then transferred to the real robot. Luo
et al. (2019) also presented an approach to learn assembly
tasks by learning a variable impedance controller. They use
end-effector force/torque readings filtered by a low-pass fil-
ter and directly inject them in the second layer of the neural

network representing the policy in order to provide direct
haptic information to the policy. These approaches use inter-
action force in the state given to the RL policy but do not
optimize interaction cost.

Kim et al. (2021) presented a method to learn impedance
parameters using RL for insertion tasks and then transferred
the learned policy to a real robot which presents a need for
fairly accurate simulation. Beltran-Hernandez et al. (2020)
proposed a method to learn force controllers on a position-
controlled robot using an end-effector force/torque sensor
with RL. Both of these approaches use force data in the state
and try to optimize interaction forces. Beltran-Hernandez et
al. (2020) do not use any method to guide or constrain RL
exploration and hence results in collision during the learning.

Table 1 compares the approaches for learning contact tasks
to RL-SCT. We address the various shortcomings of this
related work in RL-SCT by leveraging pre-specified task
knowledge to improve sample efficiency and simplifying
reward function design. RL-SCT facilitates direct learning
on real robots hence alleviating the need for simulation. Sim-
plified reward functions in RL-SCT allow us to optimize
secondary costs, e.g. interaction force costs, right from the
beginning of learning, producing significantly lower forces
during learning and resulting in learned policies that generate
minimal interaction forces with the environment.

3 Shared control templates

In most applications of shared control, the aim is to map
low-dimensional input commands to task-relevant motion on
a high-dimensional (robotic) system. An example is EDAN
(“EMG-controlled Daily AssistaNt”) (Vogel et al., 2020),
which consists of an electric wheelchair with an articulated
arm. EDAN typically takes a 3D input signal extracted from
surface electromyography. It maps these inputs to 6D end-
effector movements, which are then mapped to the movement
of the overall 11 degree-of-freedom system (excluding the
degrees of freedom in the hand) through whole-body motion
control (Quere et al., 2020).

Performing tasks such as opening doors and pouring lig-
uids with EDAN raises the following challenges: (1) The 6D
end-effector action space is too complex for a user to com-
mand in unison. A typical user command is at most 3D. (2)
There are many constraints that should not be violated, e.g.
not tilting a full bottle too much before starting to pour. (3)
All tasks consist of multiple phases, e.g. grasp bottle, move
towards mug, tilt bottle, pour, etc. (4) The state and action
spaces are continuous.

To address these challenges, we have proposed Shared
Control Templates (SCTs) (Quere et al., 2020), which consist
of several components.

@ Springer

12 Page6of17

Autonomous Robots (2024) 48:12

Table 1 Comparison with
state-of-the-art approaches on

learning in-contact tasks using
RL. f,,, denotes contact forces
with the environment. (D
demonstrations, C constraints
and residual learning, S
pre-trained in simulation)

Criteria On real robot Guidance S ext as state S ex in reward
(Zhao et al., 2022) v D - -
(Apolinarska et al., 2021) v D.,S v -
(Vecerik et al., 2019) v D - -
(Beltran-Hernandez et al., 2020) v - v v
(Lee et al., 2020b) v C - -
(Kozlovsky et al., 2022) v C - -
(Davcheyv et al., 2022) v C - -
(Kim et al., 2021) v S v v
(Luo et al., 2019) v - v -
(Buchli et al., 2011) v D - v
(Kalakrishnan et al., 2011) v D v v
RL-SCT (our approach) v C v v

State: Translational (g;): =9 | State: Tilt (q5)
as d

_a= f(d)

2)

roll = pitch = 291 j pod
State transitions.» % = J ¢
Q<1lra > 1rad
(V< 0.24 rad
State: Pour (q3) i i
P

a=g([ala20

Fig.3 The Shared Control Template (SCT) for pouring water. Different
phases of a task are modeled as different SCT states (¢;) in a Finite
State Machine (‘Translational’, ‘Tilt’, ‘Pour’). In each state, an Input
Mapping maps the 3D user input commands a1, a2, a3 to 6D end-effector
motions. Active Constraints (shown in orange text) limit the range of
motion

Input Mappings (IMs)

In previous work, the user provides commands through
electromyography or a joystick (Quere et al., 2020). An Input
Mapping converts these user inputs—which in this paper are
3D, following Quere et al. (2020)—to phase-dependent 6D
end-effector motions.

Inthe Translational and Tilt states in Fig. 3 for example, all
3inputs ay, a, az are mapped to the 3 translational Cartesian
DoFs. In the Pour state, a3 is mapped to translation in Z-
direction and the vector [a; a; 0] is mapped to the tilt angle
of the thermos via a scalar projection.

Formally, an IM is a function which computes a desired
displacement AH € SE(3) in task space from an n-
dimensional input @, with n < 6 at time step ¢ (dropping

@ Springer

the subscript i in g¢; from now on):

map, : R" — SE@3)

ey
a; — AH.

The displacement computed from Eq. (1) is then applied on
the end-effector pose H;:

displaceq: SEQ3),SEQ3) —> SEQ3)

Ht,AHI—) ;IPF]

@)

Active Constraints (ACs)

Active Constraints (Bowyer et al., 2013) constrain the end-
effector pose that results from applying an IM. As illustrated
in Fig. 3 during the phase Pour, the tilt angle « of the bottle
is constrained, to avoid excessive pouring. Another example
of AC in the Tilt phase is the value of the tilting angle being
a function of the distance from the target.

Formally, after applying the IM to obtain H ﬂ 1» geometric
constraints can be enforced using AC. An AC (Quere et al.,
2020) applies a projection of the form,

projectq: SEQ3) — SEQ3) 3

im ac
H, — HZ,,

where H}{ | is the constrained end-effector pose. This con-
straint could for example be the arc-circle path traced by the
door handle when opening a door or orientation constraints
depending on the end-effector position when approaching an
object, as in the Tilt phase in Fig. 3.

Finite State Machine (FSM) and Transition Functions
Different phases of a task require different IMs and ACs,
as illustrated in Fig. 3. For this reason, these phases are rep-
resented as states in a finite-state machine (FSM). The FSM
triggers transitions from one state to the next by monitoring

Autonomous Robots (2024) 48:12

Page70f17 12

transition functions, which measure when certain distances
d; € R drop below pre-specified thresholds.

During the approach in the first state in the pouring task
for instance, d; is the distance between thermos and mug tip
positions att,i.e.d; = ||X¢h,; —Xmug,||. In the last state, when
actually pouring, the distance is the tilting angle d; = o;.
Both are highlighted as blue rectangles in Fig. 3.

A key aspect of SCTs is that they facilitate task comple-
tion through shared control by defining task-relevant IMs and
ACs, but the user always remains in control, i.e. determines
the speed of movement, the amount of water that is poured,
etc.

SCTs have previously been used to automate tasks, where
trajectories are generated through local optimization (Busta-
mante et al., 2021); our aim here is to optimize the overall
policy that generates the trajectory.

4 Shared control templates for
reinforcement learning

The key insight that we propose is that components that facil-
itate human control of the robot through shared control are
conceptually very similar to those used to facilitate reinforce-
ment learning. Our aim is to demonstrate this conceptually
and empirically.

Figure 4 shows how SCTs are integrated in the RL agent-
environment interface. In this section, we describe how the
main components of SCTs—Input Mappings, Active Con-
straints, and the Transition Functions between the FSM
states—are conceptually similar to state-dependent action
space shaping (see Sect. 2.1), action manifolds (see Sect.
2.2), and reward shaping (see Sect. 2.4), respectively.

4.1 Action space shaping with SCTs

Using IMs to map 3D user commands to 6D Cartesian com-
mands, the action space A of the MDP is reduced to 3D.
Although IMs can accept inputs up to 6D, more than 3 inputs
are rarely needed in most tasks (Quere et al., 2020).

The application of AC is conceptually equivalent with con-
tinuous state-dependent action masking, in that not all actions
defined by the IM have an effect'.

Typically, in RL, constraints are encoded implicitly in
the reward function, through reward terms that encourage
actions that do not violate them. A direct consequence of
such approach is that an agent will need to violate these con-
straints in order to learn them. In many robotic tasks, violating

! The underlying implementation is slightly different, in that the action
is projected into the future in state space, and the resulting end-effector
position is projected back onto a constraint if the constraint is violated
(Quere et al., 2020).

Shared Control Template

state 2 (active state)
input active
mapping constraints

______ » Reward
d Function
t

Environment

RL Agent

Fig.4 Agent-environment interface in SCT-RL components. The input
a; to the IM of an SCT is computed by the RL policy, s; is the state for the
RL agent. d; is the distance function to determine transitions in the FSM;
it can be used as a shaped reward function. All time-varying variables
are annotated with the same ¢, in practice the agent-environment loop
and the controllers using the end-effector poses H may run at different
frequencies

constraints can lead to physical damage. SCTs address the
above issues by precluding the robot from violating con-
straints through the definition of Active Constraints.

4.2 Reward Shaping with SCTs

In RL, the main role of the reward function R is usually to
provide feedback about whether the task has been achieved,
e.g. was the exit to the maze found, was water poured into
the glass, etc. We call this the primary reward. Designing
a primary reward function is easiest if this reward is sparse
(e.g. 1 or 0) and terminal (i.e. ernm is given at the end of
an episode) (Chatterji et al., 2022). However, this is also the

least informative type of reward function.

Primary reward shaping with the SCT transition distance

Reward shaping is the process of redesigning the sparse
primary reward function so that it becomes dense and/or
immediate, to make the reward function more informative
and speed up learning. The process of designing an SCT is
similar to that of shaping a reward function; we now explain
how a shaped reward function can be generated automatically
from an SCT.

In an SCT, the transition distance functions that yield d,
are designed in such a way that it monotonically decreases
as the robot moves towards the next phase of the task. As
this constitutes a gradient towards the overall task, d; can be
used directly as a immediate primary rewards in addition to

@ Springer

12 Page8of17

Autonomous Robots (2024) 48:12

a terminal sparse reward, as follows:

prim

rr=rp Sparse “)
re=rP" 4 k(dioy — dy), Shaped 5)

where k is a constant and er "M a terminal reward which is
zero exceptatt = T. Note that the term d;_| —d; encourages
progress towards the next SCT state, and thus task comple-
tion, by rewarding a decrease in transition distance.

Secondary costs

While the primary reward provides feedback about task
completion, in robotics it is also desirable for movements to
have low accelerations and low force interactions. As such
measures can commonly be measured at each time step, we
add M such measures to the immediate rewards as

M
secon § : T
r; = - vi’tRivi,ta (6)
i=1

where v; ; is a vector representing a physical quantity whose
magnitude is to be minimized during learning, and R; is a
diagonal matrix with positive entries representing a weight-
ing factor. In this work we focus on two types of secondary
rewards that penalize actions a; and interaction forces f,,
with which the overall cost function becomes:

Sparse Shaped part
—— ——
re="rr +k(d-1—d) —a/Rea;—f/Rsf,. @)
Primary Secondary

5 Evaluation

We first evaluated RL-SCT against RL without SCT in simu-
lation on a pouring task with a KUKA IIWA (Fig. 5), and
perform the same task directly on the real 7-DoF SARA
robot (shown in Fig. 2a). To showcase the safe and effi-
cient learning properties of our method, we also learn a
grid-clamp placement task (Fig. 2b), showing how RL-SCT
allows tasks involving contacts with the environment to be
learned directly on the real robot. These experiments on the
real robots aim at demonstrating the ability of RL-SCT to
learn the tasks directly on the real robot, safely and efficiently.

As RL-SCT performs action space shaping and reward
shaping in the environment (see Fig. 4), the underlying pol-
icy representation and RL algorithm used by the agent are
unaffected by applying RL-SCT. To highlight this, we apply
both Soft Actor Critic (SAC) (Haarnoja et al., 2018) and
Truncated Quantile Critics (TQC) (Kuznetsov et al., 2020)
from the open-source implementation in Stable-Baseline3

@ Springer

1 2
- Mug
Then%

4 5

)

Fig.5 Experimental setup for the pouring task with simulated KUKA
IIWA holding the thermos and the target mug placed on the table with
thermos tip and mug tip coordinate frames

l'wl
!

(Raffin et al., 2021). The parameters for these algorithms are
provided in “Appendix A”.

In all experiments, the policy is a feed-forward neural
network with 2 hidden layers with 256 neurons in each hidden
layer. The weights of the neural network are initialized to
random values.

5.1 Pouring task

The pouring task consists of transferring the liquid from a
container (thermos) attached to the end-effector of the robot
to a target container (mug) placed in the environment. The
SCT for the pouring task is visualized in Fig. 3 and explained
in Table 2. In our experiments, the liquid is replaced by two
ping-pong balls with 4 cm diameter, as illustrated in Figs. 2a
and 5.

The SCT for this task was taken as is from our previous
work on assistive robotics (Quere et al., 2020), where it was
shown that using the SCT for shared control enables users
to complete the pouring task more than twice as fast, on
average. SCTs were an essential component for winning the
Cybathlon Challenges for Assistive Robots in 2023 (Jaeger
et al., 2023; Vogel et al., 2023).

The state for this task is §; = xm,; where xg, ; is the 6D
pose of the thermos tip expressed in the mug tip frame. In
RL-SCT, as shown in Fig. 4, a policy generates an action
a; € R3 which acts as input to the SCT, which in turn gen-
erates a desired end-effector pose (Sect. 3). When running
RL without SCT in the ablation study, the policy generates
the 6D end-effector velocity as action a, which is used to
compute the target end-effector pose. The end-effector poses
are given as references to the Cartesian position controller,
which runs at 100Hz for the simulated KUKA IITWA robot
and 8KHz for the SARA robot.

Autonomous Robots (2024) 48:12

Page9of17 12

Table2 Comparison of

Classical RL reward function

RL-SCT

Task s
knowledge modeled using ask state
typical RL reward functions and Translational
RL-SCT for a pouring task

Tilt

Pour

Reward for moving towards tar-
get, penalty for spilling (by directly
penalizing rotational motion) and
penalty for collision

Reward for moving and tilting
towards the target simultaneously,
penalty for spilling liquid (by penal-
izing translational and rotational
motion in undesired directions),
penalty for collision

Reward for tilting towards the mug,
penalty for spilling liquid (by penal-
izing translation to avoid spillage
outside the target), and penalty for
collision

IM: 3 inputs mapped to transla-
tional motion (No rotational motion
needed). AC: Stay above table to
avoid collisions Transition distance:
Distance of mug tip from thermos
tip

IM: 3 inputs mapped to transla-
tional motion (Rotational motion
is controlled by AC). AC: Stay
above table to avoid collisions, tilt
towards the target depending on dis-
tance Transition distance: Distance
of mug tip from thermos tip

IM: 1 input mapped to Z-axis trans-
lational motion, the others to the tilt-
ing motion (no horizontal motion).
AC: Stay above table and mug to

avoid collision, Transition distance:
Tilting angle

On the real robot, the pose of the mug in the robot base
frame was fixed and known beforehand. The pose of the ther-
mos, grasped by the robot gripper, was calculated from the
forward kinematics of the robot.

5.1.1 Reward functions

We evaluate our approach by comparing the above mentioned
four scenarios. The baseline uses RL without SCTs, with a
designed reward function, which is either shaped (RL-Shaped)
or sparse (RL-Sparse). Our proposed method based on SCTs
is also evaluated with a shaped (RL-SCT-Shaped) and sparse
(RL-SCT-Sparse) reward function.
Sparse reward function

For the pouring task, the sparse reward function used in
both RL-Sparse and RL-SCT-Sparse is

200, on successful termination

rr = 4 —10, on termination due to collision (8)
0, otherwise,
r=rr—ala, ©)

where atTa + asecondary cost component related to the action

magnitude.

The task is considered successful only if both balls are
successfully poured into the mug. In the experiments with the
real robot, a human observing the task provided the feedback
about the success of the task. The task is considered failed
if the robot collides with the mug or the table, one or both
balls are spilled out of the thermos or a pre-defined time
limit in terms of time steps per episode is reached. In the

event of collision with the table or target mug, the episode is
terminated.

This sparse reward function is not very informative, as the
primary reward consists only of three discrete rewards given
only at the end of the episode.

Shaped reward function from the SCT
The reward function for RL-SCT-Shaped is automatically
derived from d; in the SCTs, as described in Sect. 4.2, i.e.

re =rr +200(d;_ — d;) —a/ a,, (10

where rr is the same as in Eq. (9).

Hand-designed shaped reward function

We also hand-designed a shaped reward function for the
pouring task. Our aim here is to show the intricacy of the
design process for manually shaped reward functions, and
its similarity to the process of designing an SCT.

First, the pouring task is divided in two phases, (1) trans-
port the thermos near the mug without spilling the liquid, and
(2) pour the liquid by tilting the thermos around the appro-
priate axis. The translation phase takes the thermos to a fixed
distance near the target mug, and the pouring phase rotates
the thermos avoiding any translation. These phases need to
be identified correctly, and give the reward for not tilting
the thermos in the first phase and reward for tilting around
the correct axis and not around the other axes in the second

phase.

The implementation of this reward function for RL-Shaped
is given by Eq. (11)—(13), where j; is the distance between
the thermos tip and the mug tip, and ¢;, ¢; and @7 are the
angular positions, expressed as Euler angles (roll, pitch and
yaw) of the thermos tip in the mug tip frame (orientations of

@ Springer

12 Page 100f 17

Autonomous Robots (2024) 48:12

the tip frames are depicted in Fig. 5).

rZPrim _ r[dis[+ rttilt/4 _ a,Ta, +rr, (11
- 15(j.[_1 - j.z), if ji >.0.04 (12)
15(j;—1 — ji:) + 0.2, otherwise
it _ | 18971 = 187 | — 18¢7|, if j: > 0.04 (13)
© T | 2085 — 156) 1 — 1451, otherwise

In the design of the shaped reward function, we recog-
nize many similarities to SCT design, e.g. the definition of
phases, transition thresholds between the phases, definition
of constraints, etc. Table 2 provides a full analysis of the
similarities.

5.1.2 Results

Figures 6 and 7 show the rate of success, spillage and collision
with the environment in simulation both with SAC and TQC.
The curves show the mean and standard deviation obtained
from 10 different learning sessions. The results from the dif-
ferent combinations of reward types and presence/absence of
SCTs give important insights about the influence of SCT on
the learning process, and failures during learning.

Using SAC (Fig. 6) RL-Sparse is not able to learn the task
in 1400 (maximum) episodes [A]. RL-Shaped converges within
1200 episodes [B], but also shows very high spill rate and
collision rate due to unconstrained exploration [C]. RL-SCT-
Sparse converges within 600 episodes [D], shows very low
spill rate and no collisions [E] due to the constraints. RL-SCT-
Shaped converges within 250 episodes [G] showing the best
performance overall, with small initial spill rate [F] and no
collisions.

Using TQC (Fig. 7) RL-Sparse is not able to learn the task
in 1400 (maximum) episodes [H]. RL-Shaped converges within

RL-Sparse RL-Shaped

i—; 0.50
0.25 J
ANV\.JV‘\J»,"\,N\/.,\' YY) i /\-J\/“‘./ Wit

-0.25 —— Spill rate
RL-SCT-Sparse

—— Success rate
Collision rate

RL-SCT-Shaped

Rate

-0.25
0 500 1000 0 500 1000
Number of episodes Number of episodes

Fig. 6 Success, spill and collision rates vs number of episodes, in dif-

ferent experimental settings in simulation using SAC. Each point shows
the average of 10 learning sessions, together with one standard deviation

@ Springer

RL-Sparse RL-Shaped
1.00
0.75
2
8 050
0.25
000 Y oy, W SMAGRARA . i & . Al

—— Spill rate
—— Success rate
Collision rate

|
0.75 [‘
§ 0.50
0.25
0.00 =

0 500 1000 0 500 1000

RL-SCT-Sparse RL-SCT-Shaped

Number of episodes Number of episodes
Fig.7 As Fig. 6, but using TQC
Dense reward Rates
—— Reward 10— spillrate
75 —
0.8 Success rate
§ 50 06
T
& 2 %04
0 0.2
0.0
-25
0 20 40 60 80 0 20 40 60 80
Number of episodes Number of episodes

Fig. 8 Success rate, spill rate and reward for RL-SCT-Shaped on the
real robot using SAC. Each point shows the mean and one standard
deviation over 5 learning sessions

700 episodes [1], but also shows very high spill rate and
collision rate due to unconstrained exploration [J]. RL-SCT-
Sparse converges within 1000 episodes [K] and shows very
low spill rate and no collisions [L] due to the constraints. RL-
SCT-Shaped converges within 250 episodes showing the
best performance overall, with small initial spill rate [N] and
no collisions. Figure 9 summarizes these results.

The results on the real robot are shown in Fig. 8. As we
wanted to avoid collisions as much as possible during train-
ing, and running more than 1000 episodes multiple times
takes prohibitively long on the real robot, we only ran RL-SCT-
Shaped with SAC. Figure 8 shows the results of 5 independent
learning sessions. The learning agent achieves a success rate
of 1 within 65 episodes amounting to 9700 time steps, on
average. This corresponds to 16 min of training time, with-
out considering the time taken for resetting the environment.

5.1.3 Discussion

From the learning curves and the summary in Fig. 9, we
derive the following conclusions. As expected Shaped (yel-
low/green) outperforms Sparse (red/blue) by several orders
of magnitude wrt. convergence speed as shaped rewards are
more informative (top two graphs). The boxplots further con-
firm that SCTs speed up learning (blue vs. red and green vs.

Autonomous Robots (2024) 48:12

Page110f17 12

Soft Actor-Critic Truncated Quantile Critics
no SCT with SCT no SCT with SCT
8 8 8
o 2 2
©1000- 2 2 - 400
) O - °
8 s500- 8 2 g - 200
= 2 T 3
3 g = e =
:“: 0 - 1 1 1 T 1 1 1 1 1 - O
60 -
-4
n 40-
g £ i
R 20- £ =
= @
04 - = = =
1 1 1 1 1 1 1 1 1
40 - -8
2
S 30- -6
k) ©
3 20- g -4
8 <)
X 10- g EI -2
o
0- - _ -
1 1 1 1 1 1 1 1 1
3 & 3T % ¢ % ¢ %
s 5 &8 & g E 5 8 g
= < o < < = < o <
A) @ w2 w
e 2 9 5 G g 2 9 &
9 2 @ 9 @
 zZ = =z

Fig. 9 Boxplots summarizing the liquid pouring experiments. Left:
SAC (including real robot experiment), Right: TQC. ‘# until conver-
gence’: number of episodes until 10 subsequent episodes achieve the
task. ‘% spills’: number of episodes in which a spill occured. ‘% colli-
sions’: number of episodes in which a collision occured

blue); indeed RL-Sparse never converges within 1400 episodes
in any of the 10 learning sessions.

From an RL perspective, speed of convergence and the
rewards achieved after convergence are the most important
measures of success. From a robotics perspective, safety is
just as important, and this aspect is highlighted in the lower
two rows of the boxplots. We observe that with SCTs (box-
plots to the right of the vertical gray lines), there are hardly
any collisions or spills; especially the 0 spills and O collisions
on the robot are of importance. With SAC, the median per-
centage (over 10 learning sessions) of episodes that involves
collision is 12 and 20 for sparse/shaped rewards respectively
(bottom left graph, red/yellow) . On a real robot, this would
lead to an unacceptable amount of wear-and-tear, which is
why we do not run experiments on the robot without SCT.
This confirms that SCT-RL leads to safer learning, enabling
RL directly on the real robot.

In comparison to SAC, we see a much lower rate of spills
and collisions without SCTs (red/yellow) with TQC, i.e.
between 2 and 5%. This is because in many learning ses-
sions, the robot learns to not move at all. The robot does
not receive the reward for completing the task then, but it
also does not get the penalties for collisions. The reason for

Fig.10 Bottom view of a grid-clamp (left) and uncertainty when grasp-
ing grid-clamps (middle/right)

the low rates is not that collisions are avoided during the
movement; rather there is hardly any movement at all. With
RL-Shaped, we see more collisions and spills for TQC than for
RL-Sparse. This is because the reward gradient in the shaped
reward leads to more movement than the sparse reward which
is never received.

The results show that RL-SCT can learn the multi-phase
pouring task on the real robot safely (no collisions) and effi-
ciently (convergence in less than 100 episodes). Furthermore,
safe exploration is not sacrificed when using a sparse reward
function.

In these experiments, reward shaping was essential to
making RL without SCTs feasible within 1400 episodes.
Therefore, if the RL expert needs to invest time in design-
ing a complex multi-phase shaped reward function as in Eq.
(11) to make learning feasible, we argue that this time is
better invested in designing explicit multi-phase constraints.
This will speed up learning even more, and, critically, ensure
safety during learning, as constraints no longer need to be
violated in order to learn them. What is known need not be
learned.

5.2 Grid clamp insertion task

In order to evaluate the ability of RL-SCT to learn tasks
involving contacts, a grid-clamp placement task was learned
on the SARA robot (Fig. 2b). Grid clamps are used in DLR’s
Factory of Future setup to reconfigure variable workstations.
The robot learns to insert the grid-clamp into the grid holes
on the table, similar to a peg-in-hole task.

During the insertion process, 5 peg-like heads, which
secure the grid-clamp on the table, are needed to be inserted
simultaneously and snapped into the holes on the table, as
shown in Fig. 10 (top). The task is challenging due to the
kinematic inaccuracy mainly in the horizontal plane (x—y),
the pose of the grid-clamp (estimated using forward kine-
matics of the robot) and the holes on the table. Additional
inaccuracies arise from the grasp of the grid-clamp, as shown
in Fig. 10, as well as the inherent inaccuracy of the Cartesian
impedance controller and table pose calibration.

@ Springer

12 Page120f 17

Autonomous Robots (2024) 48:12

In our experiments, we place the grid-clamps at 6 different
locations to be picked up by the robot, with a user resetting
the setup every 6th episode. This way we ensure that the
robot learns under uncertainties arising from both the grasp
and the robot configuration. During the experiments, the grid-
clamp is grasped and transported above the hole using a hand
designed grid-clamp pick up skill. The RL policy takes over
when the grid-clamp is above the target hole.

It is possible to complete the task successfully despite the
above mentioned uncertainties by appropriately reacting to
the contact forces. While the task can still be executed suc-
cessfully with high contact forces, minimizing them is critical
for safe long-term operation of the robot. We therefore mini-
mize contact forces by including them as a secondary reward,
with the primary reward ensuring the task completion.

The SCT used for learning this task has the following
design:

e Phases: one phase is used, governing the translational
motion of the peg towards the hole.

e Constraints: the rotational degrees of freedom are con-
strained (we assume negligible uncertainty on the hole
orientation) and the robot is free to move in translational
DoFs within a cuboid constraint of size 0.8 cm x 0.8 cm x
10cm.

e Transitions: the transition distance d; is the z-axis dis-
tance between the grid-clamp and the hole.

For the grid-clamp insertion task (Sect. 5.2), the 6D state
given to the policy is s; = [xtT f;—]T where x; € R? is
the position of the grid-clamp (attached to the robot gripper)
expressed in the hole frame and f, € R is the force mea-
sured at the grid-clamp frame by the integrated force/torque
Sensor.

5.2.1 Reward function

Using the outlined SCT, the policy mainly has to learn the
contact dynamics during insertion. Particularly, the robot is

@
8

12 @ |E

SN
o 3 &

Success rate
« B

Average interaction force [N]

o

—— Without force cost
—— With force cost

'
&

0 20 40 60 80 100 120 0 20 40
Number of episodes

Fig. 11 Learning performance of the SAC policy on the grid-clamp
insertion task for RL-SCT-Shaped on the real robot with interaction
force cost. The plots shows learning performance with and without force

@ Springer

Ve

Number of episodes

encouraged to reduce the contact force by introducing a sec-
ondary cost component for the measured force f, at the
grid-clamp frame. The reward function is thus given by:

50, on successful termination
(14)

rr = .
0, otherwise.

re =rr +300(di—1 —dy) — éf,Tf, —a/a. (15)

We determine task success from the z coordinate of the
end-effector; if it drops below a threshold, this indicates the
clamp has been placed successfully. To evaluate the effect
of the interaction force cost on the interaction forces during
learning, two sets of experiments were conducted: 1) using
the interaction force cost in the reward function (f ZT f:)and
2) without using interaction force costs.

5.2.2 Results

In both cases, with and without using interaction force cost
in the reward function, the robot learns the grid-clamp inser-
tion task in less than 70 episodes amounting to 9820 time
steps (= 17 min) as shown in Fig. 11. It achieves 100%
success in 70 episodes [0]. Figure 11 (center) shows the aver-
age interaction force per episode, computed, for episode i,
as f; = Zfl\/’:] Inf,-’n/Ni, where f; , is the interaction
force measured at step n and N; is the number of steps in the
episode.

Comparison of the average interaction forces, [P] and [Q],
shows that the robot uses significantly less force during the
learning process when the reward function contains the sec-
ondary cost term associated with interaction forces. This
happens without significantly affecting other components of
learning, particulary the time required to achieve 100% suc-
cess rate [0] and the speed of task completion in terms of
time steps [R] when the policy is learned. Figure 12 shows the
comparison of the rewards gained over number of episodes.
For both cases, learning in terms of reward converges in ~70
episodes.

—— Without force cost
—— With force cost

—— Without force cost
—— With force cost

200

@
3

3
3

Episode length [timesteps]

60 80 100 120 0 20 40 60 80 100 120
Number of episodes

interaction cost in the reward function. Each point shows the mean and
one standard deviation over 5 learning sessions

Autonomous Robots (2024) 48:12

Page130f17 12

With force cost Without force cost

40 40

Reward
8
Reward

o 20 40 60 80 100 120 o 20 40 60 80 100 120
Number of episodes Number of episodes

Fig.12 Comparison of rewards achieved by learning agent with reward
functions with and without interaction force cost. Each point shows the
mean and one standard deviation over 5 learning sessions

5.2.3 Discussion

RL-SCT can also effectively learn a task involving contact
forces directly on the real robot as demonstrated by learning
the grid-clamp insertion. Notably, through the definition of a
transition-distance-based primary reward, the reward curves
(both with and without force cost) converge quickly (Fig.
12). The secondary reward penalizing interaction forces then
allows the learning of a policy that uses an optimal force
profile.

It is worth emphasizing that both tasks were learned not
only in an small amount of time but also with safety for both
the robot and the environment, with no collisions observed.
This was ensured by the SCT constraints in task space. More-
over, we highlight that, despite achieving 100% success rate
after 70 episodes, in the setting without force cost the robot
keeps exploring, resulting in subsequent failures (Fig. 11-
left). We observed that continued exploration with inadequate
force behaviors often leads the robot to apply too high con-
tact forces on the environment, increasing the likelihood of
failure even after the task has been learned. Such undesired
force profiles can be seen in Fig. 11-center after the 80-90
episode range.

6 Conclusion

We proposed a framework—RL-SCT—to guide reinforce-
ment learning with constraints that are represented as
Shared Control Templates. We have demonstrated that
the properties that users expect from shared control—
empowerment through freedom of movement, safety by
enforcing constraints, low-dimensional input commands to
facilitate control—are properties that are also advantageous
for robot reinforcement learning.

Our experiments show that the explicit representation of
constraints leads to faster learning, and without the need
to design complicated reward functions to represent these
constraints. Particularly, we demonstrated that RL-SCT facil-
itates reinforcement learning on real robots. In a pouring

task (without contacts between robot and environment) we
showed that RL-SCT allows the robot to learn the task in 16
min without dangerous interactions with the environment.
Given the importance of safety during in-contact tasks, we
also applied our approach to a grid-clamp insertion task in
the presence of position uncertainties to learn a policy which
succeeds at the task while minimizing contact forces. Simi-
larly to the pouring task, the robot was able to quickly learn
the task in ~ 17 min, exhibiting low contact forces when com-
pared to a baseline which did not account for contact force
minimization. In view of the difficulty to accurately model
contacts in simulation (and the subsequent reality gap) our
results gain special relevance as we show that RL-SCT can
be used to learn directly on the robot safely and efficiently,
while minimizing interaction forces.

Despite the successful results obtained, some limitations
of RL-SCT should be highlighted. On the one hand, our
approach is tailored to the learning of tasks involving the use
of objects with known constraints. It is less suited for learn-
ing intricate motor skills, such as those required for juggling,
ball-in-cup, or locomotion. On the other hand, the design of
SCTs can be cumbersome, especially for new tasks. How-
ever, we argue that designing SCTs leads to safer and faster
learning than the classical approach of carefully designing
shaped rewards, which also often takes a significant amount
of time (and trial and error, with all the potentially danger-
ous interactions it entails). At the same time, we believe that
re-using SCTs from already existing tasks in new ones is a
promising way to mitigate the design effort.

In future work we will investigate methods to extract the
required SCT components from demonstrations (Quere et
al., 2021, 2024), namely constraints and nominal solutions
to complete a given task. Having an initial policy that can be
extracted from demonstrations and which only fails in spe-
cific conditions can help further simplify the reward functions
used by RL-SCT. Motion primitive representations which
capture aleatoric and epistemic uncertainties (Huang et al.,
2019; Silvério & Huang, 2023) are promising approaches to
build on, to achieve such goals.

A Parameters for SAC and TQC

Parameters for iiwa robot simulation (pouring task)
SAC parameters: learning rate=0.0008, buffer
size =1000000, discount factor=0.95, soft
update coefficient=0.02,training frequency
=8, gradient steps=8, learning starts at
=1000, batch size=256.

TQC parameters: learning rate=0.0008, buffer
s1ze=1000000, discount factor=0.95, soft
update coefficient=0.02,training frequency

@ Springer

12 Page 14 0of 17

Autonomous Robots (2024) 48:12

=8, gradient steps=8, learning starts=1000,
batch size=256.

Parameters for real SARA robot (pouring task and grid
clamp task)

SAC parameters: learning rate=0.001, buffer
=1000000, discount factor=0.98, soft
update coefficient=0.02,training frequency
=8, gradient steps=8, learning starts at
=1000, batch size=256.

size

Acknowledgements The research reported in this paper has been
(partially) supported by the German Research Foundation DFG,
as part of Collaborative Research Center (Sonderforschungsbereich)
1320 Project-ID 329551904 “EASE—Everyday Activity Science and
Engineering”, University of Bremen (http://www.ease-crc.org/). The
research was conducted in subproject RO4: Cognition-enabled execu-
tion of everyday actions. This work was also supported in part by the
European Union’s Horizon Research and Innovation Programme under
Grants 101070596 (euROBIN) and 101136067 (INVERSE).

Author Contributions AP, J.S., E.S. designed the experiments and
wrote the manuscript. A.P. implemented the SCT-RL framework and
implemented and conducted the experiments. G.Q. provided the SCT
implementation and wrote the SCT description. A.R. provided support
for Stable Baselines 3. G.Q. and A.R. reviewed the manuscript.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz, R., McGrew,
B., Pachocki, J., Petron, A., Plappert, M., Powell, G., Ray, A., &
Schneider, J. (2020). Learning dexterous in-hand manipulation.
The International Journal of Robotics Research, 39(1), 3-20.

Apolinarska, A. A., Pacher, M., Li, H., Cote, N., Pastrana, R., Gramazio,
F., & Kohler, M. (2021). Robotic assembly of timber joints using
reinforcement learning. Automation in Construction, 125, 103569.

Beltran-Hernandez, C. C., Petit, D., Ramirez-Alpizar, 1. G., Nishi, T.,
Kikuchi, S., Matsubara, T., & Harada, K. (2020). Learning force
control for contact-rich manipulation tasks with rigid position-

@ Springer

controlled robots. IEEE Robotics and Automation Letters, 5(4),
5709-5716.

Bitzer, S., Howard, M., & Vijayakumar, S. (2010). Using dimension-
ality reduction to exploit constraints in reinforcement learning. In
2010 IEEE/RSJ international conference on intelligent robots and
systems (pp. 3219-3225). IEEE.

Bowyer, S. A., Davies, B. L., & Baena, F. R. (2013). Active con-
straints/virtual fixtures: A survey. IEEE Transactions on Robotics,
30(1), 138-157.

Bruyninckx, H., & De Schutter, J. (1996). Specification of force-
controlled actions in the “task frame formalism”: A synthesis.
IEEE Transactions on Robotics and Automation, 12(4), 581-589.

Buchli, J., Stulp, F., Theodorou, E., & Schaal, S. (2011). Learning
variable impedance control. International Journal of Robotics
Research, 30(7), 820-833.

Bustamante, S., Quere, G., Hagmann, K., Wu, X., Schmaus, P., Vogel,
J., Stulp, F., & Leidner, D. (2021). Toward seamless transitions
between shared control and supervised autonomy in robotic assis-
tance. IEEE Robotics and Automation Letters, 6(2), 3833-3840.

Chatterji, N., Pacchiano, A., Bartlett, P., & Jordan, M. (2022). On the
theory of reinforcement learning with once-per-episode feedback.
2105.14363.

Cheng, R., Orosz, G., Murray, R. M., & Burdick, J. W. (2019). End-
to-end safe reinforcement learning through barrier functions for
safety-critical continuous control tasks. In Proceedings of the AAAI
conference on artificial intelligence (pp. 3387-3395).

Cruz, F.,, Magg, S., Weber, C., & Wermter, S. (2014). Improving rein-
forcement learning with interactive feedback and affordances. In
4th international conference on development and learning and on
epigenetic robotics (pp. 165-170). IEEE.

Cruz, F, Magg, S., Weber, C., & Wermter, S. (2016). Training
agents with interactive reinforcement learning and contextual
affordances. IEEE Transactions on Cognitive and Developmen-
tal Systems, 8(4), 271-284.

Cruz, E, Parisi, G. 1., & Wermter, S. (2018). Multi-modal feedback
for affordance-driven interactive reinforcement learning. In 2078
international joint conference on neural networks (IJCNN) (pp.
1-8). IEEE.

Curran, W., Brys, T., Aha, D., Taylor, M., & Smart, W. D. (2016).
Dimensionality reduced reinforcement learning for assistive
robots. In 2016 AAAI fall symposium series.

Daniel, C., Neumann, G., Kroemer, O., & Peters, J. (2013). Learning
sequential motor tasks. In 2013 IEEE international conference on
robotics and automation (pp. 2626-2632). IEEE.

Davchev, T., Luck, K. S., Burke, M., Meier, F., Schaal, S., & Ramamoor-
thy, S. (2022). Residual learning from demonstration: Adapting
dmps for contact-rich manipulation. [EEE Robotics and Automa-
tion Letters, 7(2), 4488-4495.

Dragan, A. D., & Srinivasa, S. S. (2013). A policy-blending formalism
for shared control. The International Journal of Robotics Research,
32(7), 790-805. https://doi.org/10.1177/0278364913490324

Elguea-Aguinaco, 1., Serrano-Mufioz, A., Chrysostomou, D., Inziarte-
Hidalgo, I., Bggh, S., & Arana-Arexolaleiba, N. (2023). A review
on reinforcement learning for contact-rich robotic manipula-
tion tasks. Robotics and Computer-Integrated Manufacturing, 81,
102517.

Gibson, J. J. (1979) The ecological approach to visual perception.
Houghton Mifflin Harcourt (HMH).

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International conference on machine learning,
PMLR (pp. 1861-1870).

He, Z., & Ciocarlie, M. (2022). Discovering synergies for robot
manipulation with multi-task reinforcement learning. In 2022
international conference on robotics and automation (ICRA) (pp.
2714-2721). IEEE.

http://www.ease-crc.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1177/0278364913490324

Autonomous Robots (2024) 48:12

Page150f17 12

Huang, S., & Ontafién, S. (2020). A closer look at invalid action masking
in policy gradient algorithms. CoRR arXiv:2006.14171

Huang, Y., Rozo, L., Silvério, J., & Caldwell, D. G. (2019). Kernelized
movement primitives. International Journal of Robotics Research,
38(7), 833-852.

Iskandar, M., Ott, C., Eiberger, O., Keppler, M., Albu-Schiffer, A., &
Dietrich, A. (2020). Joint-level control of the dIr lightweight robot
sara. In 2020 IEEE/RSJ international conference on intelligent
robots and systems (IROS) (pp. 8903-8910). IEEE.

Jaeger, L., Baptista, R. D., Basla, C., Capsi-Morales, P., Kim, Y. K.,
Nakajima, S., Piazza, C., Sommerhalder, M., Tonin, L., Valle, G.,
& Riener, R. (2023). How the cybathlon competition has advanced
assistive technologies. Annual Review of Control, Robotics, and
Autonomous Systems, 6(1), 447-476.

Kalakrishnan, M., Righetti, L., Pastor, P, & Schaal, S. (2011).
Learning force control policies for compliant manipulation. In
2011 IEEE/RSJ international conference on intelligent robots
and systems (pp. 4639—4644). https://doi.org/10.1109/IROS.2011.
6095096

Kanervisto, A., Scheller, C., & Hautamiki, V. (2020). Action space
shaping in deep reinforcement learning. CoRR arXiv:2004.00980

Khetarpal, K., Ahmed, Z., Comanici, G., Abel, D., & Precup, D. (2020).
What can i do here? A theory of affordances in reinforcement
learning. In International conference on machine learning, PMLR
(pp. 5243-5253).

Kim, Y. G.,Na, M., & Song, J. B. (2021). Reinforcement learning-based
sim-to-real impedance parameter tuning for robotic assembly. In
2021 21st international conference on control, automation and
systems (ICCAS) (pp. 833-836). IEEE.

Koert, D., Kircher, M., Salikutluk, V., D’Eramo, C., & Peters, J. (2020).
Multi-channel interactive reinforcement learning for sequential
tasks. Frontiers in Robotics and Al 7, 97.

Kolter, J. Z., & Ng, A. Y. (2007). Learning omnidirectional path fol-
lowing using dimensionality reduction. In Robotics: Science and
systems (pp. 27-30).

Kozlovsky, S., Newman, E., & Zacksenhouse, M. (2022). Reinforce-
ment learning of impedance policies for peg-in-hole tasks: Role
of asymmetric matrices. I[EEE Robotics and Automation Letters,
7(4), 10898-10905.

Krishnan, S., Garg, A., Liaw, R., Thananjeyan, B., Miller, L., Pokorny, F.
T., & Goldberg, K. (2019). Swirl: A sequential windowed inverse
reinforcement learning algorithm for robot tasks with delayed
rewards. The International Journal of Robotics Research, 38(2-3),
126-145.

Kroemer, O., Daniel, C., Neumann, G., Van Hoof, H., & Peters,
J. (2015). Towards learning hierarchical skills for multi-phase
manipulation tasks. In 2015 IEEE international conference on
robotics and automation (ICRA) (pp. 1503-1510). IEEE.

Kuznetsov, A., Shvechikov, P., Grishin, A., & Vetrov, D. (2020).
Controlling overestimation bias with truncated mixture of con-
tinuous distributional quantile critics. In International conference
on machine learning, PMLR (pp. 5556-5566).

Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., & Hutter, M. (2020a).
Learning quadrupedal locomotion over challenging terrain. Sci-
ence Robotics, 5(47), eabc5986.

Lee, M. A., Florensa, C., Tremblay, J., Ratliff, N., Garg, A., Ramos,
F., & Fox, D. (2020b). Guided uncertainty-aware policy opti-
mization: Combining learning and model-based strategies for
sample-efficient policy learning. In 2020 IEEE international con-
ference on robotics and automation (ICRA) (pp. 7505-7512).
IEEE.

Leidner, D., Borst, C., & Hirzinger, G. (2012). Things are made for
what they are: Solving manipulation tasks by using functional
object classes. In International conference on humanoid robots
(HUMANOIDS). https://elib.dlr.de/80508/

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen, D. (2018).
Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection. The International Journal
of Robotics Research, 37(4-5), 421-436.

Liu, P, Tateo, D., Ammar, H. B., & Peters, J. (2022). Robot reinforce-
ment learning on the constraint manifold. In Conference on robot
learning, PMLR (pp. 1357-1366).

Luck, K. S., Neumann, G., Berger, E., Peters, J., & Amor, H. B.
(2014). Latent space policy search for robotics. In 2014 IEEE/RSJ
international conference on intelligent robots and systems (pp.
1434-1440). IEEE.

Luo, J., Solowjow, E., Wen, C., Ojea, J. A., Agogino, A. M., Tamar,
A., & Abbeel, P. (2019). Reinforcement learning on variable
impedance controller for high-precision robotic assembly. In 2079
international conference on robotics and automation (ICRA) (pp.
3080-3087). IEEE.

Mason, M. T. (1981). Compliance and force control for computer con-
trolled manipulators. IEEE Transactions on Systems, Man, and
Cybernetics, 11(6), 418-432.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602

Ng, A. Y., Harada, D., & Russell. S. (1999). Policy invariance under
reward transformations: Theory and application to reward shaping.
In Ieml (pp. 278-287).

Padalkar, A., Nieuwenhuisen, M., Schneider, S., & Schulz, D. (2020a).
Learning to close the gap: Combining task frame formalism and
reinforcement learning for compliant vegetable cutting. In /ICINCO
(pp. 221-231).

Padalkar, A., Nieuwenhuisen, M., Schulz, D., & Stulp, F. (2020b).
Closing the gap: Combining task specification and reinforcement
learning for compliant vegetable cutting. In International con-
ference on informatics in control, automation and robotics (pp.
187-206). Springer.

Parisi, S., Ramstedt, S., & Peters, J. (2017). Goal-driven dimensionality
reduction for reinforcement learning. In 2017 IEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS) (pp.
4634-4639). IEEE.

Ploeger, K., Lutter, M., & Peters, J. (2020). High acceleration reinforce-
ment learning for real-world juggling with binary rewards. arXiv
preprint arXiv:2010.13483

Quere, G., Bustamante, S., Hagengruber, A., Vogel, J., Steinmetz, F., &
Stulp, E. (2021). Learning and interactive design of shared control
templates. In 2021 IEEE/RSJ international conference on intelli-
gent robots and systems (IROS) (pp. 1887-1894). IEEE.

Quere, G., Hagengruber, A., Iskandar, M., Bustamante, S., Leidner, D.,
Stulp, F., & Vogel, J. (2020). Shared control templates for assistive
robotics. In 2020 IEEE international conference on robotics and
automation (ICRA) (pp. 1956-1962).

Quere, G., Stulp, F,, Filliat, D., & Silverio, J. (2024). A probabilistic
approach for learning and adapting shared control skills with the
human in the loop. In International conference on robotics and
automation (ICRA).

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., &
Dormann, N. (2021). Stable-baselines3: Reliable reinforcement
learning implementations. Journal of Machine Learning Research.
https://elib.dlr.de/ 146386/

Raffin, A., Hill, A., Traoré, R., Lesort, T., Diaz-Rodriguez, N., & Filliat,
D. (2019). Decoupling feature extraction from policy learning:
assessing benefits of state representation learning in goal based
robotics. SPiIRL workshop ICLR.

Reinhart, R. F., & Steil, J. J. (2015). Efficient policy search in low-
dimensional embedding spaces by generalizing motion primitives
with a parameterized skill memory. Autonomous Robots, 38, 331-
348.

@ Springer

http://arxiv.org/abs/2006.14171
https://doi.org/10.1109/IROS.2011.6095096
https://doi.org/10.1109/IROS.2011.6095096
http://arxiv.org/abs/2004.00980
https://elib.dlr.de/80508/
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/2010.13483
https://elib.dlr.de/146386/

12 Page160of 17

Autonomous Robots (2024) 48:12

Salvato, E., Fenu, G., Medvet, E., & Pellegrino, F. A. (2021). Crossing
the reality gap: a survey on sim-to-real transferability of robot
controllers in reinforcement learning. IEEE Access, 9, 153171-
153187.

Schwab, D., Springenberg, T., Martins, M.F.,, Lampe, T., Neunert,
M., Abdolmaleki, A., Hertweck, T., Hafner, R., Nori, F,, &
Riedmiller, M. (2019). Simultaneously learning vision and feature-
based control policies for real-world ball-in-a-cup. arXiv preprint
arXiv:1902.04706

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam,
V., Lanctot, M., & Dieleman, S. (2016). Mastering the game of
go with deep neural networks and tree search. Nature, 529(7587),
484-489.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,
Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., & Chen,
Y. (2017). Mastering the game of go without human knowledge.
Nature, 550(7676), 354-359.

Silvério, J., & Huang, Y. (2023). A non-parametric skill representation
with soft null space projectors for fast generalization. In Pro-
ceedings of the IEEE international conference on robotics and
automation (ICRA) (pp. 2988-2994).

Stolle, M., & Precup, D. (2002). Learning options in reinforce-
ment learning. In Abstraction, reformulation, and approximation:
5th international symposium, SARA 2002 Kananaskis, Alberta,
Canada August 2—4, 2002 proceedings 5 (pp. 212-223). Springer.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforce-
ment learning. Artificial Intelligence, 112(1-2), 181-211. https://
doi.org/10.1016/s0004-3702(99)00052- 1

Taylor, A., Singletary, A., Yue, Y., & Ames, A. (2020). Learning for
safety-critical control with control barrier functions. In Learning
for dynamics and control, PMLR (pp. 708-717).

Tosatto, S., Chalvatzaki, G., & Peters, J. (2021). Contextual latent-
movements off-policy optimization for robotic manipulation skills.
In 2021 IEEE international conference on robotics and automation
(ICRA) (pp. 10815-10821). IEEE.

Vecerik, M., Sushkov, O., Barker, D., Rothorl, T., Hester, T., & Scholz,
J. (2019). A practical approach to insertion with variable socket
position using deep reinforcement learning. In 2019 international
conference on robotics and automation (ICRA) (pp. 754-760).
IEEE.

Vogel, J., Hagengruber, A., Iskandar, M., Quere, G., Leipscher, U.,
Bustamante, S., Dietrich, A., Hoppner, H., Leidner, D., & Albu-
Schiffer, A. (2020). Edan-an emg-controlled daily assistant to help
people with physical disabilities. In 2020 IEEE/RSJ international
conference on intelligent robots and systems, IROS 2020.

Vogel, J., Hagengruber, A., & Quere, G. (2023). Mattias and edan win-
ning at cybathlon challenges march 2023. https://www.youtube.
com/watch?v=EoER_5vYZsU

Zhao, T.Z., Luo, J., Sushkov, O., Pevceviciute, R., Heess, N., Scholz,
J., Schaal, S., & Levine, S. (2022). Offline meta-reinforcement
learning for industrial insertion. In 2022 international conference
on robotics and automation (ICRA) (pp. 6386-6393). IEEE.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Abhishek Padalkar is currently
working as a roboticist at the Insti-
tute of Robotics and Mechatron-
ics, German Aerospace Center
(DLR). He earned his Master of
Science degree in Autonomous
Systems from Hochschule Bonn-
Rhein-Sieg, Bonn, Germany. The
main focus of his research is to
investigate reinforcement learning
for learning tasks directly on the
robots.

Gabriel Quere was born in France
in 1993. After an engineering
degree at Ensta Paris and a Mas-
ter of Science at Université Paris-
Saclay, he joined the Robotics and
Mechatronic Center (RMC) of the
German Aerospace Center (DLR),
in the re-enabling robotics team.
His research interest includes
shared control for assistive robots
and learning skills from demon-
strations.

Antonin Raffin is a research engi-
neer in robotics and machine learn-
ing at the German Aerospace Cen-
ter (DLR). Previously, he worked
on state representation learning in
the ENSTA robotics lab (U2IS),
where he created the Stable-
Baselines library together with
Ashley Hill. His research focus
is now on applying reinforcement
learning directly to real robots, for
which he continues to maintain
the Stable-Baselines3 library.

Joao Silvério is a group leader
at the German Aerospace Cen-
ter (DLR) since April 2022. He
received his Ph.D. in Robotics
(2017) from the University of
Genoa (Genoa, Italy) and the Ital-
ian Institute of Technology, where
he was also a postdoctoral
researcher until May 2019.
Between June 2019 and March
2022 he was a postdoctoral
researcher at the Idiap Research
Institute (Martigny, Switzerland).
He is interested in machine learn-
ing for robotics, particularly imi-

tation and reinforcement learning. Webpage: http:/jpsilverio.github.
io.

@ Springer

http://arxiv.org/abs/1902.04706
https://doi.org/10.1016/s0004-3702(99)00052-1
https://doi.org/10.1016/s0004-3702(99)00052-1
https://www.youtube.com/watch?v=EoER_5vYZsU
https://www.youtube.com/watch?v=EoER_5vYZsU
http://jpsilverio.github.io
http://jpsilverio.github.io

Autonomous Robots (2024) 48:12

Page170f17 12

Freek Stulp received the doc-
torate degree in computer science
from the Technical University of
Munich, Munich, Germany, in
2007. He is currently the Head
of the Department of Cognitive
Robotics, Institute of Robotics and
Mechatronics, German Aerospace
Center. Previously, he was an
Assistant Professor with the Ecole
Nationale Supérieure de
Techniques Avancées.

@ Springer

	Guiding real-world reinforcement learning for in-contact manipulation tasks with Shared Control Templates
	Abstract
	1 Introduction
	1.1 Contributions

	2 Related work
	2.1 Safe and efficient reinforcement learning with state-dependent action masking
	2.1.1 Affordances in RL

	2.2 Efficient reinforcement learning with action manifolds
	2.3 RL with sequential tasks and/or task decompositions
	2.4 Reward shaping
	2.5 Reinforcement learning of manipulation tasks with contacts

	3 Shared control templates
	4 Shared control templates for reinforcement learning
	4.1 Action space shaping with SCTs
	4.2 Reward Shaping with SCTs

	5 Evaluation
	5.1 Pouring task
	5.1.1 Reward functions
	5.1.2 Results
	5.1.3 Discussion

	5.2 Grid clamp insertion task
	5.2.1 Reward function
	5.2.2 Results
	5.2.3 Discussion

	6 Conclusion
	A Parameters for SAC and TQC
	Acknowledgements
	References

