Bahtiri, Betim und Arash, Behrouz und Scheffler, Sven und Jux, Maximilian und Rolfes, Raimund (2024) A thermodynamically consistent physics-informed deep learning material model for short fiber/polymer nanocomposites. Computer Methods in Applied Mechanics and Engineering, 427 (1), Seiten 1-23. Elsevier. doi: 10.1016/j.cma.2024.117038. ISSN 0045-7825.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0045782524002949?via%3Dihub
Kurzfassung
This work proposes a physics-informed deep learning (PIDL)-based constitutive model for investigating the viscoelastic–viscoplastic behavior of short fiber-reinforced nanoparticle-filled epoxies under various ambient conditions. The deep-learning model is trained to enforce thermodynamic principles, leading to a thermodynamically consistent constitutive model. To accomplish this, a long short-term memory network is combined with a feed-forward neural network to predict internal variables required for characterizing the internal dissipation of the nanocomposite materials. In addition, another feed-forward neural network is used to indicate the free-energy function, which enables defining the thermodynamic state of the entire system. The PIDL model is initially developed for the three-dimensional case by generating synthetic data from a classical constitutive model. The model is then trained by extracting the data directly from cyclic loading–unloading experimental tests. Numerical examples show that the PIDL model can accurately predict the mechanical behavior of epoxy-based nanocomposites for different volume fractions of fibers and nanoparticles under various hygrothermal conditions.
elib-URL des Eintrags: | https://elib.dlr.de/204482/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | A thermodynamically consistent physics-informed deep learning material model for short fiber/polymer nanocomposites | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Juli 2024 | ||||||||||||||||||||||||
Erschienen in: | Computer Methods in Applied Mechanics and Engineering | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 427 | ||||||||||||||||||||||||
DOI: | 10.1016/j.cma.2024.117038 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-23 | ||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||
Name der Reihe: | ELSEVIER Computer Methods in Applied Mechanics and Engineering | ||||||||||||||||||||||||
ISSN: | 0045-7825 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Short fiber/epoxy nanocompositesPhysics-informed neural networksRecurrent neural networkThermodynamic consistent modelingFinite deformation | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||
HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||||||||||
HGF - Programmthema: | Photovoltaik und Windenergie | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SW - Solar- und Windenergie | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Windenergie | ||||||||||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Systemleichtbau > Multifunktionswerkstoffe | ||||||||||||||||||||||||
Hinterlegt von: | Jux, Maximilian | ||||||||||||||||||||||||
Hinterlegt am: | 03 Jun 2024 07:52 | ||||||||||||||||||||||||
Letzte Änderung: | 13 Jun 2024 09:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags