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A B S T R A C T

This work proposes a physics-informed deep learning (PIDL)-based constitutive model for
investigating the viscoelastic–viscoplastic behavior of short fiber-reinforced nanoparticle-filled
epoxies under various ambient conditions. The deep-learning model is trained to enforce
thermodynamic principles, leading to a thermodynamically consistent constitutive model. To
accomplish this, a long short-term memory network is combined with a feed-forward neural
network to predict internal variables required for characterizing the internal dissipation of the
nanocomposite materials. In addition, another feed-forward neural network is used to indicate
the free-energy function, which enables defining the thermodynamic state of the entire system.
The PIDL model is initially developed for the three-dimensional case by generating synthetic
data from a classical constitutive model. The model is then trained by extracting the data
directly from cyclic loading–unloading experimental tests. Numerical examples show that the
PIDL model can accurately predict the mechanical behavior of epoxy-based nanocomposites for
different volume fractions of fibers and nanoparticles under various hygrothermal conditions.

1. Introduction

In the coming decades, materials science is expected to make breakthroughs in order to meet the increasing demand for
lightweight and durable materials that can withstand extreme conditions. The current focus of research in synthetic composites is on
developing high-performance glass fiber (GF) reinforced epoxy composites that incorporate various nano-fillers such as nanoparticles
and nanotubes [1,2]. Adding nanoscale fillers to polymer matrices has a dual impact on material behavior. Firstly, nanoparticles
exhibit different physical and chemical properties compared to their bulk counterparts due to a more significant portion of their
atoms being on the surface. Secondly, nanoparticles have a remarkably high surface-to-volume ratio that provides a contact surface
area that can be up to 1000 times greater than that of micro-sized particles. This enhances efficient load transfer from the matrix
to the reinforcements, which is critical for achieving high-performance materials. In recent studies, boehmite nanoparticles (BNPs)
have been shown to be effective in enhancing the material properties of composites, such as the strength, critical energy release
rate and other material properties [3–5].

Although the resulting fiber-reinforced BNP/epoxy nanocomposites have proven to be suitable for different engineering appli-
cations, predicting their mechanical behavior under various loading conditions has become a real challenge. To accurately predict
the history-dependent behavior of these materials under hygrothermal conditions, the literature has seen the development of more
intricate constitutive models with additional parameters [6–10]. While these advanced constitutive models effectively capture the
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highly nonlinear nature of material behavior, a significant challenge lies in minimizing the error between numerical predictions
and experimental data, particularly under complex loading conditions and different ambient conditions, such as temperature and
moisture. Additionally, classical constitutive laws often lack generality and accuracy to capture the mechanical behavior under
different ambient- and loading–unloading conditions [11–13].

In recent years, deep learning approaches have attracted attention to improving the numerical methods [14–18]. One of the
irst works in this direction was conducted by Ghaboussi et al. [19], who proposed a neural network approach to unify the
echanical behavior of plain concrete directly from experimental data. Recognizing that the material behavior is path-dependent,

hey trained the neural network to predict strain increments given the current state of stress, strain, and stress increment. However,
ue to the necessity for a comprehensive set of experiments, the model was limited to predicting only biaxial and uniaxial loading
cenarios. Also, long short-term memory networks (LSTM), which belong to the class of recurrent neural networks (RNN), have
een incorporated within finite element simulations [20] to computational homogenize anisotropic behavior under arbitrary loading
aths [21] for heterogeneous material. The results prove the effectiveness of the LSTM network in capturing the mechanical behavior
or a two-dimensional case. The classical way of utilizing machine learning in constitutive modeling is to map the strain tensor
nd material parameters to depict the stress tensor by creating a set of data from constitutive models [22,23]. Bahtiri et al. [24]
resented a similar approach to predict the viscoelastic–viscoplastic damage of a nanoparticle-filled epoxy system under cyclic
oading–unloading conditions with moisture. The authors developed a deep learning material model, implemented the model within
finite element framework and showed a significant increase in computational efficiency compared with the classical constitutive
odel.

While RNNs efficiently predict path-dependent mechanical behavior, the plain mapping of strain to stress tensors does not
nforce thermodynamic consistency and cannot guarantee accurate extrapolation. Therefore, using a physics-informed approach [25]
as proven to be successful in various engineering applications, such as solving differential equations [25–27] and constitutive
odeling [28–30]. Masi et al. [31] proposed a physics-informed neural network to predict strain rate-independent material behavior

y encoding the two principles of thermodynamics within the neural network’s architecture. They demonstrate the applicability of
heir model for elastoplastic materials. This work is extended to an evolution of their neural networks towards identifying internal
ariables for path-dependent materials and evolution equations by decoupling from their previous incremental formulation [32].
ang et al. [33] presented a physics-informed constitutive neural network for quasi-linear viscoelasticity by combining an initial

ime-independent stress and a time-dependent relaxation using a recurrent network. The results prove that combining these two
etworks leads to an accurate prediction of soft viscoelastic tissues. Linden et al. [34] proposed a physics-informed neural network
o enforce thermodynamic consistency and additional constitutive conditions for the hyperelastic behavior of a Neo-Hooke model.
heir model is trained solely by using uniaxial stress data and shows accurate results for predicting biaxial or simple shear tests
or anisotropic material. As’ad et al. [35] presented a different physics-informed neural network to predict complex viscoelastic
ehavior for a woven fabric material. They employ an internal-variable three-potential approach to viscoelasticity and satisfy the
hermodynamics, stability conditions, consistency, and recovery of the elastic limits. The performance of their physics-informed deep
earning (PIDL) model is illustrated on a computational homogenization simulation. Another work that utilizes the capabilities of
ecurrent neural networks is from He et al. [36], who presented a PIDL model to predict the internal variables of a path-dependent
aterial. They predict the internal variables and the free-energy function by combining several neural networks. Their results are

ccurate even for cyclic shear loading using experimental stress–strain data of soil material. The latest work of Abdolazizi et al. [37]
ffers a constitutive artificial neural network model that captures the anisotropy of viscoelasticity at finite deformation. Their model
elies on the concept of generalized Maxwell models, and the architecture of their PIDL model is restricted to predicting viscoelastic
ehavior. The authors train their model on stress–strain data from synthetic data of very-high-bond soft electro-active polymers and
xperimental stress–strain data of very-high-bond polymers, showing accurate interpolation and extrapolation behavior. Rosenkranz
t al. [38] present a similar approach, which is based on internal variables and can predict nonlinear viscoelasticity by using a
ree-energy and dissipation potential in combination with input convex neural networks [39]. They utilize invariants and show the
dvantages of invariants as input instead of the coordinates themselves.

After reviewing the investigations mentioned in the literature, it is evident that several issues related to these models require
ttention. Firstly, the models are either based on small strain assumption or are proposed for a specific mechanical behavior, such
s viscoelasticity [37]. Secondly, the models have mainly been developed for homogeneous or anisotropic materials at specific
emperatures and dry condition. This neglects the influence of different ambient conditions (i.e., temperature, and moisture content)
n combination with other inputs such as particle or fiber volume fraction. Thirdly, the models are used to increase computational
fficiency and, therefore, trained using synthetic data from classical constitutive models [24] without enforcing thermodynamic
onsistency. Moreover, the authors demonstrate the applicability of physics-informed neural networks to predict the classical
onstitutive model by training already-known internal variables of classical constitutive models [32]. Therefore, the models cannot
e trained using direct stress–strain data from experiments without the knowledge of internal variables.

To address these issues, this study focuses on developing a PIDL model to improve the performance of constitutive modeling for
hort fiber/epoxy nanocomposite material under different ambient conditions. For this, we propose an architecture of a PIDL model
or an anisotropic material system with multiple families of fibers at finite deformation. The proposed model is able to predict the
nternal variables and enforce the thermodynamic principles without a priori knowledge of the internal variables of the material, thus
ncreasing the capability of modeling the material directly from experimental stress–strain data. The effectiveness of the proposed
IDL model is evaluated in two cases. The first case includes synthetic data from a classical viscoelastic–viscoplastic model for
fiber-reinforced nanoparticle-filled epoxy nanocomposite calibrated using experimental data with moisture content. The second
2

ase comprises experimental data for a nanoparticle-filled epoxy nanocomposite for a wide range of temperatures, including dry and
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saturated states. The accuracy and effectiveness of the present model are shown by evaluating its interpolation and extrapolation
capabilities.

The present work is organized as follows. First, the thermodynamic principles of constitutive modeling are presented in Section 2,
hich are incorporated within the PIDL model. The integration and explanation of the model are provided in Section 3. We deliver

nsights into the neural networks used, the symmetry classes of the material at hand, and the overall architecture of the PIDL model.
he training approach is also explained. In the last Section 4 we present our classical viscoelastic–viscoplastic damage model for
iber reinforced nanoparticle-filled epoxy nanocomposite. The model is calibrated using experimental data, and data is generated
sing the calibrated constitutive model to show the accuracy of the PIDL model for a three-dimensional case of an anisotropic
aterial system with moisture content and different volume fractions of fibers/nanoparticles. Lastly, the predictive capability of the
IDL model is evaluated by simulating cyclic loading–unloading of a nanoparticle-filled epoxy nanocomposite using experimental
ata for various ambient conditions.

. Thermodynamics principles and general requirements for constitutive modeling

The first law of thermodynamics states that the rate of change of total kinetic energy of a thermodynamic system equals the rate
t which external mechanical work is done on the system at hand. Therefore, the local form and material description of the energy
alance reads

𝑒̇ = 𝐏 ∶ 𝐅̇ − Div𝐐 + 𝑅, (1)

where 𝑒 and 𝑒̇ are the volume density of the internal energy and its local time derivative, 𝐏 is the first Piola–Kirchhoff stress tensor, 𝐅
is the deformation gradient, 𝐐 is the referential heat flux and 𝑅 is the volume density of possible external source terms. The second
law of thermodynamics is responsible for the direction of the energy transfer process. The combination of the first and second law
of thermodynamics and elimination of the external heat source R leads to the Clausius–Duhem inequality as follows [40]:

𝐏 ∶ 𝐅̇ − 𝑒̇ + 𝜃𝜂̇ − 1
𝜃
𝐐 ⋅𝐆𝐫𝐚𝐝𝜃 ≥ 0, (2)

where the last term describes the entropy production by conduction of heat. By applying the Legendre transformation, the Helmholtz
free energy density is expressed as 𝜓 = 𝑒− 𝜃𝜂 [41]. Whenever the temperature gradient is equal to 0, every thermodynamic system
must fulfill the Clausius–Duhem inequality

d = 𝐏 ∶ 𝐅̇ − 𝜓̇ − 𝜃̇𝜂 ≥ 0. (3)

For the case of a purely mechanical case, the thermal effects can be ignored and the inequality reads

d = 𝐏 ∶ 𝐅̇ − 𝜓̇ ≥ 0, (4)

and the free energy 𝜓 coincides with the internal energy 𝑒 as shown within the Legendre transformation.
In order to model nonlinear and inelastic materials, it is necessary to derive a constitutive model that is capable of describing

every dissipative process. The thermodynamic state of materials, including dissipation, can be determined by a number of so-called
internal variables, which can be scalar, vector, or tensor values. We denote the internal variables collectively by 𝑧. These variables
describe the internal structure of the material at hand at each time, and the evolution of these variables replicates the history of
the deformation.

2.1. Constitutive equations and internal dissipation

To describe the dissipation, the Helmholtz free-energy function 𝜓 , which defines the thermodynamic state, is postulated as
ollows:

𝜓 = 𝜓(𝐅, 𝑧1,… , 𝑧𝑚). (5)

To particularize the Clausius–Duhem inequality as described in Eq. (4) to the postulated free-energy 𝜓 , we differentiate Eq. (5)
ith respect to time, leading to the following dissipation inequality:

d =
(

𝐏 −
𝜕𝜓(𝐅, 𝑧1,… , 𝑧𝑚)

𝜕𝐅

)

∶ 𝐅̇ −
𝑚
∑

𝛼=1

𝜕𝜓(𝐅, 𝑧1,… , 𝑧𝑚)
𝜕𝑧𝛼

∶ 𝑧̇𝛼 ≥ 0. (6)

To satisfy the dissipation inequality, the following must hold at every point of the continuum body at all times:

𝐏 =
𝜕𝜓̄(𝐅, 𝑧1,… , 𝑧𝑚)

𝜕𝐅
, D = −

𝑚
∑

𝛼=1

𝜕𝜓(𝐅, 𝑧1,… , 𝑧𝑚)
𝜕𝑧𝛼

∶ 𝑧̇𝛼 ≥ 0. (7)

The above equation restricts the free energy 𝜓 and relates the gradient of 𝜓 concerning the internal variables 𝑧𝛼 . In the Eq. (7),
he deformation gradient and the internal variables are associated with the thermodynamic forces 𝐏 and the internal variables 𝑧,
espectively. These restrictions satisfy the fundamental Clausius–Duhem inequality characterizing the local entropy production as
resented in Eq. (4). Besides the thermodynamic principles, additional requirements must be satisfied, such as objectivity, material
ymmetry, polyconvexity, non-negativity of the free energy, and normalization conditions. These are included within the PIDL model,
s presented below.
3
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2.2. Material symmetry classes for composites

In the following, two symmetry classes are presented for composite materials. While particle-reinforced nanocomposites are
sotropic materials, we present another symmetry class for fiber-reinforced and nanoparticle-filled epoxy nanocomposites. To ensure
bjectivity and material symmetry, the free-energy function is formulated in terms of invariants from the right Cauchy–Green
eformation tensor 𝐂 = 𝐅𝑇 ⋅ 𝐅 leading to the following:

𝜓 = 𝜓(𝐼1(𝐂),… , 𝐼𝑚(𝐂), 𝑧1,… , 𝑧𝑚). (8)

The corresponding second Piola–Kirchhoff stress tensor is given by:

𝐒 = 2
𝜕𝜓
𝜕𝐂

= 2
𝑚
∑

𝛼=1

𝜕𝜓
𝜕𝐼𝛼

𝜕𝐼𝛼
𝜕𝐂

, (9)

which implicitly enforces the first thermodynamic principle and the first part of the Clausius–Duhem inequality from Eq. (7), while
the second principle of the thermodynamics, i.e., D ≥ 0 is enforced within the loss function, which is discussed in the following
subsection. Also, using the invariant-based approach, the symmetry condition of the second Piola–Kirchhoff stress tensor, objectivity,
and symmetry of the material class at hand is fulfilled.

Isotropic model
For the isotropic material model, three invariants of the tensor 𝐂 are, in general, sufficient to describe the stress state [40]. The

invariants are defined as follows:
𝐼1(𝐂) = trC = 𝜆21 + 𝜆

2
2 + 𝜆

2
3 ,

𝐼2(𝐂) =
1
2

[

(tr𝐂)2 − tr(𝐂2)
]

= tr𝐂−1det𝐂 = 𝜆21𝜆
2
2 + 𝜆

2
1𝜆

2
3 + 𝜆

2
2𝜆

2
3 ,

𝐼3(𝐂) = det𝐂 = 𝐽 2 = 𝜆21𝜆
2
2𝜆

2
3,

(10)

here 𝜆2
𝛼

are the three eigenvalues of the symmetric tensor 𝐂.

ransversely isotropic model
Composites are materials composed of a matrix and one or more families of short or long fibers. Fiber-reinforced composites

ave strong directional properties. Therefore, they can be regarded as anisotropic materials. Since the anisotropic property of the
omposites appears due to the fibers, the stress at a particular material point depends on the deformation gradient 𝐅 and the fiber
irection. The direction of a fiber is defined by a unit vector field 𝐚0(𝐗), |𝐚0| = 1. Hence, by introducing the tensor product 𝐚0⊗ 𝐚0,
he following additional invariants can be derived [42]:

I4(𝐂, 𝐚0) = 𝐚0 ⋅ 𝐂𝐚0 = 𝜆2 , I5(𝐂, 𝐚0) = 𝐚0 ⋅ 𝐂2𝐚0 , (11)

nd for another additional family of fiber, we obtain:

I6(𝐂, 𝐠0) = 𝐠0 ⋅ 𝐂𝐠0 , I7(𝐂, 𝐠0) = 𝐠0 ⋅ 𝐂2𝐠0 , (12)

Here, 𝐠0 is the vector field describing the orientation of the second fiber family. To account for the angle between the two families
f fibers, the following invariant is added:

I8(𝐂, 𝐚0, 𝐠0) = (𝐚0 ⋅ 𝐠0)𝐚0 ⋅ 𝐂𝐠0, (13)

here the dot product 𝐚0 ⋅ 𝐠0 determines the cosine of the angle between the two fiber directions.

. Thermodynamically consistent deep-learning model under ambient conditions

In the following section, a PIDL model that satisfies the thermodynamic consistency for dissipative and path-dependent composite
aterials is proposed.

.1. Feed-forward neural networks

In deep learning, dense feed-forward neural networks are the basic building block of deep networks and can represent the
onlinear mapping of from inputs 𝐱 to predictions 𝐭 with a number of consecutive layers 𝐿 and trainable parameters 𝝎 as

𝑛𝑛(𝝎) ∶ 𝐱 → 𝐭, (14)

here the trainable parameters 𝝎 include weights 𝐖 and biases 𝐛 of each Layer. For each layer, a linear transformation of the inputs
is applied before a non-linear activation is enforced to obtain the activation of each layer 𝐚𝑙. This can be expressed as

𝐚𝑙 = 𝛷𝑙 (𝐖𝑙 ⋅ 𝐚𝑙 − 1 + 𝐛𝑙
)

, 𝑙 = 1, 2 ... 𝐿. (15)

Here, 𝛷 is the nonlinear activation function and the first activation 𝐚0 corresponds to the input vector while the last activation
𝐿 represents the output of the deep network.
4
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Fig. 1. A single LSTM cell comprises multiple connected layers. Here, 𝜎 represents the sigmoid function, while tanh denotes the hyperbolic tangent function.
The forget gate, input gate, and output gate regulate the flow of data into the cell. The candidate gate proposes a potential candidate for the cell state.

3.2. Long-short term memory network

While feed-forward deep networks have demonstrated success in capturing the nonlinear behavior of constitutive models [43–46],
they fall short when it comes to predicting sequential data 𝐱𝑡 sorted according to real-time. Hence, we implement a multilayered
LSTM deep network consisting of several memory cells and gates for remembering and forgetting information in each sequence.
The LSTM cell is responsible for predicting the internal variables since the evolution of the internal variables indirectly replicates
the history of the deformation.We implemented the LSTM to predict internal variables, since the gating mechanism of the LSTM
lets the network control the flow of information through the network and the gates allow LSTMs to selectively retain or discard
information from previous time steps. It should be mentioned, that other recurrent neural networks (Gated Recurrent Units) or
Nonlinear Autoregressive Exogenous Neural Network can also be implemented to predict the internal variables.

The architecture of a single LSTM cell is depicted in Fig. 1. In the illustration, 𝐡 and 𝐜 represent the hidden and cell states at
timestep 𝑡 and 𝑡 + 1, respectively. The hidden state encodes the most recent timestep and can be processed at any point to obtain
meaningful data. Since the hidden state saves the history information, it is utilized in our PIDL model as described in the next
subsection. In contrast, the cell state acts as a global memory of the LSTM network over all timesteps, allowing the LSTM cell to
have information on the history of each sequence. The learnable parameters 𝝎 of each component presented in Fig. 1 of the LSTM
cell are the input weights 𝐖, the recurrent weights 𝐑, and the bias 𝐛. These matrices are concatenations of the input weights, the
recurrent weights, and the bias of each gate as follows:

𝐖 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐖𝑖
𝐖𝑓
𝐖𝑔
𝐖𝑜

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐑 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐑𝑖
𝐑𝑓
𝐑𝑔
𝐑𝑜

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐛 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐛𝑖
𝐛𝑓
𝐛𝑔
𝐛𝑜

⎤

⎥

⎥

⎥

⎥

⎦

, (16)

where 𝑖, 𝑓 , 𝑔 and 𝑜 denote the input gate, forget gate, cell candidate, and output gate, respectively, as presented in Fig. 1.
The cell state 𝒄𝑡+1 at timestep 𝑡 + 1 is given by

𝐜𝑡+1 = 𝐟 𝑡+1 ⊙ 𝐜𝑡 + 𝐢𝑡+1 ⊙ 𝐠𝑡+1. (17)

The operator ⊙ corresponds to Hadamard product or element-wise product. The hidden state 𝐡𝑡+1 can be evaluated as follows:

𝐡𝑡+1 = 𝐨𝑡+1 ⊙ tanh
(

𝐜𝑡+1
)

, (18)

where the components of each gate are described by the following equations:

𝐢𝑡+1 = 𝜎
(

𝐖𝑖𝐱𝐭+𝟏 + 𝐑𝑖𝐡𝑡 + 𝐛𝑖
)

, (19)

𝐟 𝑡+1 = 𝜎
(

𝐖𝑓 𝐱𝑡+1 + 𝐑𝑓𝐡𝑡 + 𝐛𝑓
)

, (20)

𝐠𝑡+1 = tanh
(

𝐖𝑔𝐱𝑡+1 + 𝐑𝑔𝐡𝑡 + 𝐛𝑔
)

, (21)

𝐨𝑡+1 = 𝜎
(

𝐖𝑜𝐱𝑡+1 + 𝐑𝑜𝐡𝑡 + 𝐛𝑜
)

. (22)

In the equations above, 𝐢𝑡+1, 𝐟 𝑡+1, 𝐠𝑡+1 and 𝐨𝑡+1 are respectively the components of the input gate, forget gate, cell candidate and
output gate, and 𝝈 represents the sigmoid function. The element-wise product allows each gate to control the data flow into the cell
state 𝐜𝑡+1 by considering the history of the sequence.
5
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Fig. 2. An overview of the PIDL model. The red values are input data for the neural networks, and the green data are the outputs of the neural networks. The
LSTM cell is connected to another feed-forward neural network. Here, internal variables serve as an input with the invariants to another feed-forward neural
network. This leads to the free-energy function, which derives the secondary outputs 𝐒 and d.

.3. Input

The goal of the PIDL model is to predict the free-energy function as presented in Eq. (8) under ambient conditions. Therefore,
he input vector for our custom PIDL model includes the following values:

1. The kinematic measure of strain 𝐂𝑡+1, which describes the deformation path and serves as the first input.
2. The timestep 𝛥t𝑡 to ensure strain-rate effects [24].
3. The moisture content 𝑤𝑡+1𝑤 .
4. The nanoparticle volume fraction 𝑣𝑡+1𝑛𝑝 .
5. The volume fraction of the fibers 𝑣𝑡+1𝑓 .
6. The temperature 𝛩𝑡+1.

While the primary input is the tensor 𝐂𝑡+1, the invariants are calculated in a second step before using them as an input for the
ree-energy prediction.

.4. Architecture of the deep-learning model

The overall architecture of the model is presented in Fig. 2 and the step-by-step description follows:

1. Initially, the presented input above serves as an input for the LSTM layers, which are responsible to predict the history of
the deformation path as:

𝑙𝑠𝑡𝑚(𝝎) ∶ 𝑥𝑡+1 → ℎ𝑡+1. (23)

The initial history of the LSTM layer is initialized with ℎ0 = 0 and

𝑥𝑡+1 ∈ {𝐂𝑡+1, 𝛥t𝑡, 𝑤𝑡+1𝑤 , 𝑣𝑡+1𝑛𝑝 , 𝑣
𝑡+1
𝑓 , 𝛩𝑡+1}.

2. The obtained history output ℎ𝑡+1 serves as an input to another feed-forward neural network, whose output leads to the internal
variables of the PIDL model:

𝑧𝑛𝑛(𝝎) ∶ [ℎ𝑡+1] → 𝑧𝑡+1. (24)

For this particular neural network, the swish activation function and a linear activation function for the last layer are applied.
3. In the next step, the invariants are calculated using the right Cauchy–Green deformation tensor as presented above. These,

together with the predicted internal variables, are used as an input to the last feed-forward neural network, which predicts
the final free-energy function:

 (𝝎) ∶ [𝑧𝑡+1, I (𝐂),… , I (𝐂)] → 𝜓 𝑡+1. (25)
6
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The free-energy value is then used to compute the second Piola–Kirchhoff stress as presented in Eq. (9) and the dissipation rate
from Eq. (7) by using the automatic differentiation. The derivatives of the invariants with respect to the right Cauchy–Green
deformation tensor are presented in the Appendix.

4. To calculate the rate of the internal variables 𝑧̇, we use the following approximation:

𝑧̇ = 𝛥𝑧
𝛥𝑡
, (26)

where 𝛥𝑧 = 𝑧𝑡+1 − 𝑧𝑡.

For efficient training, input data are normalized between −1 and 1 by using the following equations:

𝑥̃ =
𝑥 − 𝑚𝑓
𝑠𝑓

, (27)

where 𝑚𝑓 = 1
2 (𝑓max + 𝑓min) and 𝑠𝑓 = 1

2 (𝑓max − 𝑓min). Here, 𝑥̃ is the scaled value, 𝑓max is the maximum value and 𝑓min is the minimum
value of the data.

As described above, the free energy is defined based on the invariants of the right Cauchy–Green tensor and internal variables.
The second Piola–Kirchhoff stress and the dissipation rate are computed by automatic differentiation. To ensure normalization of the
free energy, the free energy is constrained to 𝜓(𝐂 = 𝐈) = 0. Also, the non-negativeness of the free energy is constrained (i.e., 𝜓 ⩾ 0)
by choosing the softplus activation function 𝜎𝑙(𝑥) = ln(1 + exp(𝑥)) and constrain the weights. Due to the softplus function being
𝐶∞−continuous, we ensure 𝐶∞−continuous functions for the free-energy, stress tensor and the elasticity tensor, which is numerically
relevant for implementing the PIDL model within a finite element framework. Also, a linear activation function 𝜎𝐿(𝑥) = 𝑥 is applied
to enforce non-negative weights and biases (𝑊𝐿, 𝑏𝐿 ≥ 0) in the last layer. This yields a non-negative free-energy function.

To guarantee polyconvexity of the free energy with respect to the invariants, we implement the Partially Input Convex Neural
Network (PICNN). The architecture of the PICNN is separated into a convex and a non-convex part [37–39]. The non-convex part
with respect to 𝑧 is a feed-forward neural network, which mathematically is described as follows:

𝑛𝑖+1 = 𝛼𝑛𝑖
(

𝑊 𝑧𝑛
𝑖 𝑛𝑖 + 𝑏𝑧𝑛𝑖

)

, 𝑖 = 0, 1,… , 𝑘 − 1, (28)

while the convex part with respect to the invariants 𝐼 is described as:

𝑐𝑖+1 = 𝛼𝑖
(

𝑊 𝑐
𝑖
[

𝑐𝑖◦𝛼
𝑐𝑛
𝑖
(

𝑊 𝑐𝑛
𝑖 𝑛𝑖 + 𝑏𝑐𝑛𝑖

)]

+𝑊 𝐼
𝑖
[

𝐼◦
(

𝑊 𝐼𝑛
𝑖 𝑛𝑖 + 𝑏𝐼𝑛𝑖

)]

+𝑊 𝑛
𝑖 𝑛𝑖 + 𝑏𝑖

)

, 𝑖 = 0, 1,… , 𝑘, (29)

where 𝑊 𝑧𝑛
𝑖 , 𝑊 𝑐

𝑖 , 𝑊
𝑐𝑛
𝑖 , 𝑊 𝐼

𝑖 , 𝑊
𝐼𝑛
𝑖 and 𝑊 𝑛

𝑖 are weight matrices, 𝑏𝑧𝑛𝑖 , 𝑏
𝑐𝑛
𝑖 , 𝑏

𝐼𝑛
𝑖 and 𝑏𝑖 are the bias, 𝛼𝑛𝑖 (⋅), 𝛼𝑖(⋅) and 𝛼

𝑐𝑛
𝑖 (⋅) are the

oftPlus activation functions, 𝑖 represents the layers and ◦ represents the Hadamard product. We enable the convexity by setting
he weights 𝑊 𝑐

𝑖 to be non-negative.

.5. Model training

The loss function of the constitutive model is expressed as

 = 𝜎 + 𝑑 , (30)

here 𝜎 = |𝜎 − 𝜎𝑝𝑟𝑒𝑑 || and 𝑑 = 𝛽D⩾ 0 . 𝛽 is a weighting parameter and the Cauchy-Stress can be obtained by 𝝈 = 𝐽−1 𝐅 ⋅ 𝐒 ⋅𝐅𝑇 .
Although, a constant weighting parameter has shown to be sufficient to train physics-informed neural networks, we enhance the
training process and introduce an adaptive rule for the weighting parameter similar to the one presented in [47] by tracking the
first- and second-order moments of the gradients during training as follows:

𝛽 =
max𝜃𝑛{|∇𝜃𝜎 (𝜃𝑛)|}

|∇𝜃𝛽𝑖𝑑 (𝜃𝑛)|
, (31)

where 𝜃𝑛 are the weights and biases at step 𝑛, 𝜎 is the loss of the stresses, 𝑑 is the dissipation loss. The parameter 𝛽 is updated
s follows:

𝛽 = (1 − 𝛼)𝛽 + 𝛼𝛽. (32)

Here, We initialize 𝛼 to 0.2 and use an exponential decay to reduce the value to 0.05 after 5000 epochs. To ensure D⩾ 0, the ReLU
unction is utilized (i.e., ReLU(𝑥) = 𝑚𝑎𝑥(0, 𝑥) ≥ 0), which is positive only if 𝑥 is positive, therefore leading to D⩾ 0 = ReLU(-D).

Since the PIDL model is supposed to be a constitutive model, the calibration and training of the model is achieved without the
information of internal variables or free-energy. Therefore, we do not include these into the loss function and let the PIDL model
learn these by itself.

4. PIDL model applications

The PIDL model is applied to two cases in the following section. In the first case, the calibration of a classical constitutive
viscoelastic–viscoplastic model, including two families of fibers for different moisture, fiber, and nanoparticle content, is performed
by utilizing experimental data and subsequently generating synthetic data to train the PIDL model for the three-dimensional case.
7



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117038B. Bahtiri et al.
Fig. 3. One-dimensional schematic of the viscoelastic–viscoplastic constitutive model.

The accuracy and efficiency of the deep-learning model compared with the classical constitutive model are presented. In the
second case, we directly generate data from cyclic loading–unloading experiments conducted on a nanoparticle-filled epoxy system.
The experiments include diverse ambient conditions, e.g., temperature, moisture, and nanoparticle volume fraction. Accordingly,
the accuracy of the deep-learning model in accurately predicting the material behavior for a material system characterized by a
highly nonlinear response with temperature- and moisture dependency is shown. Notably, the deep-learning model solely utilizes
experimental data, demonstrating the capability to capture the complex stress–strain response of the material at hand.

4.1. Transversely isotropic model with synthetic data for fiber reinforced nanoparticle-filled epoxy nanocomposite

To rationalize the viscoelastic behavior of fiber-reinforced nanoparticle/epoxy nanocomposites, a viscoelastic–viscoplastic
damage model for fiber-reinforced BNP/epoxy nanocomposites is proposed. The stress response is decomposed into an equilibrium
part and two viscous parts to capture the nonlinear rate-dependent behavior of the materials. The effect of BNPs and moisture on
the stress–strain relationship is considered by defining an amplification factor as a function of the nanofiller and moisture contents.
Here, we also take into account the material swelling through moisture.

The total deformation gradient, containing the mechanical deformation, is multiplicatively split into a volumetric and deviatoric
part as

𝐅 = 𝐽 1∕3 𝐅𝑖𝑠𝑜, (33)

where 𝐽 = det[𝐅] and 𝐅𝑖𝑠𝑜 are the volumetric deformation and the isochoric deformation gradient, respectively. The volume
deformation is further decomposed into two terms: The mechanical compressibility 𝐽𝑚 and the moisture-induced swelling 𝐽𝑤, leading
to an overall volumetric deformation as

𝐽 = 𝐽𝑚 𝐽𝑤, (34)

where

𝐽𝑤 = 1 + 𝛼𝑤 𝑤𝑤. (35)

In the equation above, 𝛼𝑤 is the moisture swelling coefficient and 𝑤𝑤 is the moisture content [7,48]. The proposed model
incorporates experimental characteristics by decomposing the material behavior into a viscoelastic and a viscoplastic part,
corresponding to the time-dependent reversible and time-dependent irreversible response, respectively. We further decompose the
viscoelastic stress response into a hyperelastic network and a viscous network. The hyperelastic behavior is assumed to originate from
the connectivity and stretching of the polymer network and interactions between fiber and nanoparticle reinforcements and polymer
chains. In contrast, the viscous network composed of an elastic spring and a viscoelastic dashpot describes the non-equilibrium
behavior, taken to be governed by frictional interactions between polymer chains. Additionally, the quasi-irreversible sliding of the
molecular chains, resulting in stress softening, also known as the Mullins effect [49,50], is implemented within the constitutive
model. A schematic structure of the model is presented in Fig. 3.

The deviatoric part of the deformation gradient is decomposed into a viscoplastic and a viscoelastic component [51]:

𝐅 = 𝐅𝑣𝑒 𝐅𝑣𝑝 . (36)
8
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Also, the viscoelastic deformation gradient is split into an elastic and an inelastic part as

𝐅𝑣𝑒𝑖𝑠𝑜 = 𝐅𝑒𝑖𝑠𝑜𝐅
𝑣
𝑖𝑠𝑜. (37)

Accordingly, similar decompositions are obtained for the left Cauchy–Green deformation tensors:

𝐁𝑖𝑠𝑜 = 𝐅𝑖𝑠𝑜 𝐅𝑇𝑖𝑠𝑜, (38)

𝐁𝑣𝑖𝑠𝑜 = 𝐅𝑣𝑖𝑠𝑜 𝐅
𝑣𝑇
𝑖𝑠𝑜, (39)

𝐁𝑒𝑖𝑠𝑜 = 𝐅𝑒𝑖𝑠𝑜 𝐅
𝑒𝑇
𝑖𝑠𝑜. (40)

The total Cauchy stress in damaged state is given by

𝝈 = (1 − d)(𝝈𝑒𝑞 + 𝝈𝑛𝑒𝑞), (41)

where 𝝈𝑒𝑞 and 𝝈𝑛𝑒𝑞 are the portions of the total stress originating from the hyperelastic rubbery and the viscoelastic behavior of the
material, respectively. The stresses are finally expressed as

𝝈𝑒𝑞 =
2
𝐽𝑣𝑒

𝑁
∑

𝑖=1

[

𝜕𝜓 𝑖𝑒𝑞
𝜕I𝑣𝑒1

dev
[

𝐁𝑣𝑒𝑖𝑠𝑜

]

+
𝜕𝜓 𝑖𝑒𝑞I

𝑖
𝑣𝑒4

𝜕I𝑖𝑣𝑒4

(

𝐚𝑖𝑒 ⊗ 𝐚𝑖𝑒 −
1
3
𝐈
]

)

+

𝜕𝜓 𝑖𝑒𝑞
𝜕I𝑖𝑣𝑒5

(

I𝑖𝑣𝑒4
(

𝐚𝑖𝑒 ⊗ 𝐁𝑣𝑒𝑖𝑠𝑜 ⋅ 𝐚
𝑖
𝑒 + 𝐚𝑖𝑒 ⋅ 𝐁

𝑣𝑒
𝑖𝑠𝑜 ⊗ 𝐚𝑖𝑒

)

− 2
3

I𝑖𝑣𝑒5𝐈
)

]

,

(42)

and

𝝈𝑛𝑒𝑞 =
2
𝐽𝑒

𝑁
∑

𝑖=1

[

𝜕𝜓 𝑖𝑛𝑒𝑞
𝜕I𝑒1

dev
[

𝐁𝑒𝑖𝑠𝑜

]

+
𝜕𝜓 𝑖𝑛𝑒𝑞I

𝑖
𝑒4

𝜕I𝑖𝑒4

(

𝐚𝑖𝑣 ⊗ 𝐚𝑖𝑣 −
1
3
𝐈
]

)

+

𝜕𝜓 𝑖𝑛𝑒𝑞
𝜕I𝑖𝑒5

(

I𝑖𝑒4
(

𝐚𝑖𝑣 ⊗ 𝐁𝑒𝑖𝑠𝑜 ⋅ 𝐚
𝑖
𝑣 + 𝐚𝑖𝑣 ⋅ 𝐁

𝑒
𝑖𝑠𝑜 ⊗ 𝐚𝑖𝑣

)

− 2
3

I𝑖𝑒5𝐈
)

]

+
𝜕𝜓𝑛𝑒𝑞
𝜕𝐽𝑒

𝐈,

(43)

where the superscript 𝑖 denotes the 𝑖th family of fibers, 𝐈 is the second order unit tensor and 𝑁 = 2 for two families of fibers.
𝐚𝑖𝑒 =

𝐅𝐯𝐞𝐚𝐢𝟎
√

I𝑖𝑣𝑒4
, 𝐚𝑖𝑣 =

𝐅𝐞𝐚𝐢𝟎
√

I𝑖𝑒4
are the current fiber direction for each family of fibers and 𝜕𝜓 𝑖

𝜕I𝑗
(𝑗 = 1, 4 and 5) are calculated as follows [52]:

𝜕𝜓 𝑖

𝜕I1
(

I𝑖4, 𝜇𝑚
)

= 1
2
𝑔
[

𝑓
(

I𝑖4
)

, 𝜈𝑓 , 0.4
]

𝜇𝑚,

𝜕𝜓 𝑖

𝜕I4
(

I1,I𝑖4, 𝐼
5
5 , 𝜇𝑚

)

= 1
2
𝜇𝑚𝜈𝑓

𝜕𝑓
(

I𝑖4
)

𝜕I𝑖4

(

I𝑖4 + 2I𝑖−1∕24 − 3
)

+
(

𝜈𝑚 + 𝜈𝑓𝑓
(

I𝑖4
))

(

1 − I𝑖−3∕24

)

− 𝑔
[

𝑓
(

I𝑖4
)

, 𝜈𝑓 , 1
]

(

I𝑖5I
𝑖−2
4 + 1

)

+ 𝑔
[

𝑓
(

I𝑖4
)

, 𝜈𝑓 , 0.4
]

(

I𝑖5I
𝑖−2
4 + I𝑖−3∕24

)

+
I𝑖5 − I𝑖24
2I𝑖4

𝜕𝑔
[

𝑓
(

I𝑖4
)

, 𝜈𝑓 , 0.4
]

𝜕I𝑖4
+ 1

2

⎛

⎜

⎜

⎜

⎝

I1 −
𝐼 𝑖5 + 2

√

I𝑖4
𝐼 𝑖4

⎞

⎟

⎟

⎟

⎠

𝜕𝑔
(

𝑓
(

I𝑖4
)

, 𝜈𝑓 , 0.4
]

𝜕I𝑖4
,

𝜕𝜓 𝑖

𝜕I5
(

I𝑖4, 𝜇𝑚
)

= 1
2I𝑖4

(

𝑔
[

𝑓
(

I𝑖4
)

, 𝜈𝑓 , 1
]

− 𝑔
[

𝑓
(

I𝑖4
)

, 𝜈𝑓 , 0.4
])

𝜇𝑚

𝜕𝜓𝑛𝑒𝑞
𝜕𝐽𝑒

= 𝑘𝜈

(

𝐽𝑚 − 1
𝐽𝑚

)

.

(44)

In above equations I1 = I𝑣𝑒1, I4 = I𝑣𝑒4 and I5 = I𝑣𝑒5 for the equilibrium response 𝝈𝑛𝑒𝑞 and I1 = I𝑒1, I4 = I𝑒4 and I5 = I𝑒5 for the
non-equilibrium response 𝝈𝑒𝑞 . 𝜈𝑚 and 𝜈𝑓 are volume fractions of matrix and fibers, 𝑓 (I4) = 𝑎1 + 𝑎2 exp

[

𝑎3(I4 − 1)
]

, describes the
stiffness ratio between the fiber and the matrix [53], where 𝑎1, 𝑎2 and 𝑎3 are positive parameters and 𝑔[𝑓 (I4), 𝜈𝑓 , 𝜁] is the ratio of
effective shear moduli between composite 𝜇𝐶 and matrix 𝜇𝑚 shear moduli and is obtained as follows:

𝑔[𝑓 (I4), 𝜈𝑓 , 𝜁] =
𝜇𝐶
𝜇𝑚

=
(1 + 𝜁𝜈𝐹 )𝑓 (I4) + (1 − 𝜈𝐹 )𝜁
(1 − 𝜈𝐹 )𝑓 (I4) + (𝜁 + 𝜈𝐹 )

, (45)

where 𝜁 considers in-plane shear and transverse shear as follows:

𝜁 =
{

1 in − plane shear
0.4 transverse shear

. (46)

Here, a modified Guth–Gold model [54] is used to obtain the effective stiffness of the nanoparticle-modified epoxy system. Also,
adding a moisture dependency to the effective stiffness results in the following amplification factor [7]

X =
(

1 + 5𝑣𝑛𝑝 + 18𝑣2𝑛𝑝
)

(

1 + 0.057𝑤2
𝑤 − 9.5𝑤𝑤

)

, (47)
9

where 𝑣𝑛𝑝 is the volume fraction of BNPs and 𝑤𝑤 represents the moisture content.



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117038B. Bahtiri et al.

c

a

a

w
r

s

a
A

The total velocity gradient of the viscoelastic network, 𝐋𝑣𝑒 = 𝐅̇𝑣𝑒 (𝐅𝑣𝑒)−1 , can be decomposed into an elastic and a viscous
omponent analogously to Eq. (37)

𝐋𝑣𝑒 = 𝐋𝑒 + 𝐅𝑒𝐋𝑒𝐅𝑒−1 = 𝐋𝑒 + 𝐋̃𝑣, (48)

nd

𝐋̃𝑣 = 𝐅̇𝑣𝐅𝑣−1 = 𝐃̃𝑣 + 𝐖̃𝑣. (49)

Here, 𝐃̃𝑣 represents the rate of the viscous deformation and 𝐖𝑣 is a skew-symmetric tensor representing the rate of stretching
nd spin, respectively. The intermediate state can be made unique by prescribing 𝐖̃𝑣 = 0. The rate of the viscoelastic flow can be

described by

𝐃̃𝑣 = 𝜀̇𝑣

𝜏𝑛𝑒𝑞
dev

[

𝝈′
𝑛𝑒𝑞

]

(50)

here 𝜏𝑛𝑒𝑞 = ‖dev[𝝈𝑛𝑒𝑞] ‖𝐹 represents the Frobenius norm of the driving stress, 𝜀̇𝑣 is the viscous flow and 𝝈′
𝑛𝑒𝑞 = 𝐑𝑇𝑒 𝝈𝑛𝑒𝑞𝐑𝑒

epresents the stress acting on the viscous component in its relaxed configuration. The viscous flow is defined by the Argon model:

𝜀̇𝑣 = 𝜀̇0 exp
[

𝛥H
𝑘𝑏T

(( 𝜏𝑛𝑒𝑞
𝜏0

)𝑚
− 1

)]

, (51)

where 𝑘𝑏, 𝜀̇0, 𝛥H and 𝜏0 are the Boltzmann constant, a pre-exponential factor, the activation energy and the athermal yield stress.
Here, a sigmoid function is used for the athermal yield stress modification as follows:

𝜏0 = y0 +
a𝑠

1 + exp
(

−

(

𝛬̇𝑚𝑎𝑥𝑐ℎ𝑎𝑖𝑛 − x0
)

b𝑠

) . (52)

In summary, the time derivative of 𝐅̇𝑣 can be derived from Eq. (50) and Eq. (49) as follows:

𝐅̇𝑣 = 𝐅𝑒−1𝜀̇𝑣
dev

[

𝝈′
𝑛𝑒𝑞

]

𝜏𝑛𝑒𝑞
𝐅𝑣𝑒. (53)

The viscoplastic velocity gradient is considered to be additively decomposed into the symmetric rate of stretching and the
kew-symmetric rate of spinning:

𝐋̃𝑣𝑝 = 𝐅̇𝑣𝑝𝐅𝑣𝑝−1 = 𝐃̃𝑣𝑝 + 𝐖̃𝑣𝑝, (54)

and 𝐖̃𝑣𝑝 = 0, leading to:

𝐃̃𝑣𝑝 = 𝜀̇𝑣𝑝

𝜏𝑡𝑜𝑡
dev

[

𝝈′
𝑡𝑜𝑡
]

, (55)

where dev
[

𝝈′
𝑡𝑜𝑡
]

is the total deviatoric stress in its relaxed configuration and 𝜏𝑡𝑜𝑡 is the Frobenius norm of the total stress. To
characterize the viscoplastic flow 𝜀̇𝑣𝑝, a simple phenomenological representation is implemented similar to [55] as follows:

𝜀̇𝑣𝑝 =

{

0 𝜏𝑡𝑜𝑡 < 𝜎0
a(𝜖 − 𝜖0)b𝜖̇ 𝜏𝑡𝑜𝑡 ≥ 𝜎0,

(56)

Here, 𝑎, 𝑏 and 𝜎0 are material parameters. 𝜖0 is the stress at which the viscoplastic flow is activated. This is represented by the
Frobenius norm of the Green strain tensor ‖𝐄‖𝐹 , which is derived from the deformation gradient

𝐄 = 1
2
(𝐅𝑇𝐅 − 𝐈), (57)

nd 𝜖̇ is the strain rate of the effective strain ‖𝐄‖𝐹 , thus introducing a simple strain-rate dependency of the viscoplastic flow.
nalogous to Eq. (53), the time derivative of the viscoplastic deformation gradient is given by

𝐅̇𝑣𝑝 = 𝐅𝑣𝑒−1𝜀̇𝑣𝑝
dev

[

𝝈′
𝑡𝑜𝑡
]

𝜏𝑡𝑜𝑡
𝐅𝑖𝑠𝑜, (58)

characterizing the rate kinematics of the viscoplastic flow. The viscous and viscoplastic deformation gradients are obtained at the
end of a time increment using the Euler backward time integration.

d ∈ [0, 1) is the scalar damage variable and its evolution obeys

ḋ = A(1 − d)𝛬̇𝑚𝑎𝑥𝑐ℎ𝑎𝑖𝑛, (59)

where A is a material parameter calibrated using experimental data, 𝛬𝑐ℎ𝑎𝑖𝑛 =
√

tr[𝐁𝑖𝑠𝑜]∕3, 𝛬̇𝑚𝑎𝑥𝑐ℎ𝑎𝑖𝑛 takes the following form:

𝛬̇𝑚𝑎𝑥𝑐ℎ𝑎𝑖𝑛 =

{

0 𝛬𝑐ℎ𝑎𝑖𝑛 < 𝛬𝑚𝑎𝑥𝑐ℎ𝑎𝑖𝑛
𝛬̇𝑐ℎ𝑎𝑖𝑛 𝛬𝑐ℎ𝑎𝑖𝑛 ≥ 𝛬𝑚𝑎𝑥𝑐ℎ𝑎𝑖𝑛

(60)

For a detailed discussion of the viscoelastic–viscoplastic constitutive model, the reader is referred to [24].
10
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Table 1
Materials parameters of the viscoelastic–viscoplastic damage model.

Parameter Value Equation References

Equilibrium shear modulus 𝜇𝑒𝑞𝑚 (MPa) 525 (44)
Non-equilibrium shear modulus 𝜇𝑛𝑒𝑞𝑚 (MPa) 295 (44)
Volumetric bulk modulus 𝜅𝜈 (MPa) 1311 (44)
Viscoelastic dashpot 𝜀̇0(s−1) 1.0447 x 1012 (51) [56]

𝛥𝐻(J) 1.977 x 10−19 (51) [56]
𝑚 0.837 (51)
y0 80 (52)
x0 1.72 (52)
b𝑠 0.394 (52)
a𝑠 −40.17 (52)

Viscoplastic dashpot a 48.37 (56)
b 1.02 (56)
𝜎0 (MPa) 5.5 (56)

Damage A 943.87 (59)
Moisture swelling coefficient 𝑎𝑤 0.039 (35) [48]
Stiffness ratio parameter 𝑎1 9 (44)
Stiffness ratio parameter 𝑎2 1 (44)
Stiffness ratio parameter 𝑎3 1 (44)

4.2. Numerical results

In the following, the calibration of the classical transversely isotropic model for the fiber reinforced nanoparticle-filled epoxy
anocomposite with moisture content using experimental results is shown. Accordingly, a data generation scheme using the classical
onstitutive model is derived and the PIDL model validation is presented.

onstitutive model calibration
Concerning the tensile tests for the calibration, specimens with a thickness of 2.2 mm are produced and tested according to testing

tandard DIN EN ISO 5272, using an extensometer to measure the elongation of samples. The stress–strain curves are recorded with
test speed of 1 mm/min. The specimens were firstly dried for 7 days at 50 °C and another 21 days at 70 °C. Secondly, a set of

specimens are conditioned at 70 °C and 85% relative humidity until the saturated state is reached. The overall conditioning time
was 115 days.

To calibrate the material parameters, the stress–strain relationships of two types of specimens epoxy plus 5% BNP volume
fraction, 25% GF volume fraction and epoxy plus 20% BNP volume fraction, 20% GF volume fraction at dry and saturated state
obtained from the constitutive model is compared with those of experimental data. An object function of differences between model
results and experimental data is numerically minimized using the single-objective genetic algorithm method. The GFs are in-plane
randomly-oriented, which are represented by two families of fibers with the initial fiber directions of 𝐚0 = [1 0 0] and 𝐠0 = [0 1 0].

he experimentally identified parameters of the constitutive model are listed in Table 1. While the material parameters regarding the
iscoelastic dashpot are derived from the argon theory and identified using atomistic simulations [10,56], the remaining parameter
dentification approach is presented in [24]. The prediction of the calibrated classical constitutive model is presented in Fig. 4 for
he saturated (blue lines) and dry state (black lines). The agreement between experimental data and constitutive model prediction
onfirms the predictive capability of the implemented viscoelastic–viscoplastic damage model on the mechanical behavior of the
iber reinforced nanocomposite.

ata generation and training
We combine the PIDL model with the classical constitutive model above using the stress tensor of the undamaged material. The

tress tensor of the damaged material is then calculated using 𝝈 = (1 − d)(𝝈𝑝𝑟𝑒𝑑 ) in the postprocessing. Therefore, we attain the
resented damage model and use the PIDL model to predict the stress tensor of the undamaged material. It is a hybrid form of
ombining the classical constitutive model with the deep-learning model.

The driving force behind the generation of loading paths in the finite deformation model is the deformation gradient 𝐅. Each
omponent 𝐹𝑖𝑗 (where 𝑖, 𝑗 = 1,… , 3) corresponds to an unique loading scenario. Consequently, synthetic data is generated by varying
he components of the deformation gradient in a spatio-temporal space. Initially, constraints are imposed on the components of the
eformation gradient as follows:

F𝑖𝑗 ∈
{

[0.98 1.02], when i = j
[−0.02 0.02], when i ≠ j

. (61)

To cover the nine-dimensional spatial space with sufficient random points, quasi-random numbers are produced using the Halton
equence generation algorithm [57]. This approach yields uniform samples within the space, resulting in a more effective sampling
f the region. As presented in Fig. 5, the resulting points in the spatial space adequately span the bounded domain compared with
he pseudorandom algorithm used in most algorithms.
11
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Fig. 4. Experimental and predicted stress–strain behavior of the constitutive model (dashed lines) and experiments (solid lines) for dry (black lines) and saturated
blue lines) state. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Example of the generated data points in a two dimensional space using the Halton sequence algorithm (a) and the pseudorandom MATLAB algorithm
b).

Table 2
Summary of the step-by-step algorithm for generation of a single training
sequence.

1. Generate uniform data for the nine components.
of the deformation gradient in a range defined by (62).

2. Define P as the number of points to be visited.
3. Generate loading path within the 9-dimensional space
4. Calculate a representative strain rate as: 𝜖̇ = ‖𝐄‖𝐹 ∕ 𝛥t ,

where 𝐄 is presented in Eq. (57).
5. If 𝜖̇ > 1 ⋅ 10−5 𝑎𝑛𝑑 𝜖̇ < 1 ⋅ 10−3 GOTO step 6 else GOTO step 3.
6. Integrate the constitutive model and obtain 𝝈𝑡𝑜𝑡.
7. Create the input sequence 𝐱 and the output sequence 𝝈𝑡𝑜𝑡 for training.

Table 2 summarizes the step-by-step algorithm for the generation of training data in the nine-dimensional spatio-temporal space.
or a more specific and detailed discussion, the reader is referred to [24].

A total of 1000 sequences are generated for the training of the PIDL model and another 200 sequences for the validation process.
e include into the training process the invariants I(𝐂) ∈ {I1, I2, I3, I4, I5, I6, I7, I8} from Section 2.2 and the hyperparameters of the

PIDL model are presented in Table 3.
Firstly, the internal variables are tuned by training the model with 2 to 15 internal variables. The loss in Fig. 6 shows that the

optimum internal variables we can consider are 10. Therefore, we continue with 10 internal variables for the remaining results.
Also, the validation loss reaches a value of 0.008, which is low enough to validate the results.
12
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Table 3
Hyperparameters of the PIDL model for the first application case.

Hyperparameter Value

Learning rate 𝛼 1𝑒 − 3
Epochs 5000
Batch size 32
Hidden layers (𝑙𝑠𝑡𝑚 ,𝑧𝑛𝑛 ,𝜓𝑛𝑛) 2
Number of neurons per hidden layer (𝑙𝑠𝑡𝑚 ,𝑧𝑛𝑛 ,𝜓𝑛𝑛) 100

Fig. 6. Final training loss as a function of internal variables.

alidation and discussion
As mentioned above, the validation of the model is done using 200 additional sequences leading to a loss of 0.008. To validate

he PIDL model, data with a higher deformation gradient component is generated as follows:

F𝑖𝑗 ∈
{

[0.97 1.03], when i = j
[−0.03 0.03], when i ≠ j

. (62)

This ensures a validation for the interpolation and extrapolation of the PIDL model. Fig. 7(a) and (b) illustrate the behavior of
he fiber- and nanoparticle-reinforced epoxy under a random three-dimensional loading path, as depicted in Fig. 7(c). The solid
ines represent the classical constitutive model and the dashed lines are predicted by the PIDL model. In this case, two data points
re visited according to Table 2, leading to a complex loading path for each deformation gradient component. Remarkably, the
odel accurately predicts the stress–strain behavior under this loading scenario, and extrapolation over a strain of 𝐄 = 0.02 for the
iagonal part is demonstrated. As can be seen, the model can also predict the constraints in different directions due to the Poisson’s
atio, resulting in additional stress without a corresponding increase in deformation.

Another validation result is presented in Fig. 8(a) and (b) for the loading–unloading scenario as shown in Fig. 8(c) and a different
train rate in comparison to Fig. 7. A comparison between the experimental and deep learning data reveals that the proposed PIDL
odel can predict the stress–strain behavior for a rate-dependent material at a dry/saturated state and extrapolate over the trained

train boundaries.
Fig. 9(a) presents the free-energy value as a function of loading steps for the 3D case of Fig. 8. We observe a convex behavior

f the free energy, which is crucial to enforcing the Clausius–Duhem inequality and calculating the material tangent essential for
inite element implementation. The minimum of the free energy is at the initial state, which was enforced within our deep learning
ormulation in Section 3.4. We also observe maximum free energy after approximately 520 loading steps, correlating with the
tress maxima at the loading peak shown in Fig. 8(c). As expected, the free energy of the stiffer model (20%BNP/20%GF) reaches
igher values, and during the unloading path (post 520 loading steps), a convex decrease of the free energy is revealed. Notably,
kink in the free-energy function at approximately 95 loading steps aligns with the deformation path in Fig. 8, where a kink of

he deformation is observed at the same loading step. Fig. 9(b) shows the dissipation of the example, where we observe a highly
onlinear behavior. Noteworthy, the dissipation reaches two peaks at the inflection points of the free energy and decreases towards
he end of the deformation path. The peaks also correlate with the evolution of the internal variables depicted in Fig. 9(c), where
igher movement is observed at the beginning of the deformation path up to the second dissipation maximum and more linear
13

ehavior can be seen after the turning point of the deformation at the 520 loading step mark.
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Fig. 7. The fiber- and nanoparticle reinforced composite under a complex three-dimensional combination of shear and axial loading at dry state. The solid lines
epresent the classical constitutive model and the dashed lines are predicted by the PIDL model. The diagonal terms of the stress tensor are presented in (a)
nd the shear terms are shown in (b). The effective strain rate derived from the Frobenius norm of the Green strain tensor is 𝜀̇𝐹 = 3 × 10−3 𝑠−1. The loading
ath including all deformation gradient components presented using Eq. (57) as Green strain components.

Table 4
Comparison of the CPU time for the PIDL model and classical constitutive model in seconds.

BNP and GF volume fraction

20%BNP & 20%GF 5%BNP & 25%GF

Classical constitutive model 0.5 0.48
PIDL model 0.52 0.49

To compare the computational efficiency, we formulate the classical constitutive model using the Euler backward time integration
cheme with a deformation step of 𝛥𝐹 = 4.2 ⋅ 10−3 and a timestep of 𝛥𝑡 = 1.4𝑠. Table 4 shows the CPU-time needed for the PIDL
odel and the classical constitutive model. We observe a slight increase of the computation time for the PIDL model. This is an

xpected behavior, since the PIDL model forward propagation includes two feed-forward neural networks and a LSTM network.
lso, the automatic differentiation to obtain the stress-tensor is a time-consuming process. Nevertheless, the CPU-time difference is
egligible.

.3. Modeling of a nanoparticle-filled epoxy nanocomposite with experimental data

In the following subsection, only experimental data is used for the training and validation of the PIDL model. The accuracy of
he deep-learning model in predicting the highly nonlinear behavior of the epoxy system is then evaluated.

xperiments
The loading–unloading experiments are performed under various ambient conditions, and the experimental data are then split
14

nto training and validation data. For training, data from loading–unloading experiments with the following conditions are used.
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Fig. 8. The fiber- and nanoparticle reinforced composite under a complex three-dimensional combination of shear and axial loading at saturated state. The solid
ines represent the classical constitutive model and the dashed lines are predicted by the PIDL model. The diagonal terms of the stress tensor are presented in
a) and the shear terms are shown in (b). The effective strain rate derived from the Frobenius norm of the Green strain tensor is 𝜀̇𝐹 = 6 × 10−3 𝑠−1. The

loading path including all deformation gradient components presented using Eq. (57) as Green strain components.

• Nanoparticle volume fraction 𝑣𝑛𝑝 ∈ {0, 10}%.
• Temperature 𝛩 ∈ {−20, 23, 60}◦C.
• Moisture content 𝑤𝑤 ∈ {0, 1}, where 0 stands for the dry state and 1 is the saturated state.

Furthermore, the following data from experiments are used to validate the deep-learning model.

• Nanoparticle volume fraction 𝑣𝑛𝑝 ∈ {5}%.
• Temperature 𝛩 ∈ {−20, 23, 50, 60}◦C.
• Moisture content 𝑤𝑤 ∈ {0, 1}, where 0 stands for the dry state and 1 is the saturated state.

The specimens for the conditioning and mechanical tests are cut from the panels as presented in Fig. 10. The necking in the
ension direction of epoxy systems is a structural instability rather than a material property [9,12]. Therefore, a notch is inserted
o reduce the influence of material imperfections and necking on its yield. The conditioning of the specimens is the same as the
reviously presented material system. Finally, mechanical loading–unloading tests are produced according to testing standard DIN
N ISO 527-2, using an extensometer to measure the elongation of the specimens and a load rate of 1 mm/min. We apply a cyclic
oading to a specific amplitude and unload until the loading force reaches zero. In the next cycle, a higher force than the previous
ne is applied, and the process is repeated until failure.

raining data
Since the nanoparticle-filled epoxy nanocomposite can be regarded as an isotropic material, we include only the first three

nvariants 𝐼(𝐂) ∈ {I1, I2, I3} to the prediction of the stress tensor in Eq. (9). The hyperparameters for this application case are
resented in Table 5.
15
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Fig. 9. Free-energy(a), dissipation(b) and internal variables(c) of the constitutive model as a function of loading steps. The blue lines represent the 5%BNP/25%GF
model and black lines represent the 20%BNP/20%GF model.

Fig. 10. Planar dimensions of the specimen for conditioning and mechanical loading–unloading tests with a thickness of 2.3 mm. All dimensions are in millimeters.

Table 5
Hyperparameters of the PIDL model for the second application case.

Hyperparameter Value

Learning rate 𝛼 5𝑒 − 4
Epochs 5000
Hidden layers (𝑙𝑠𝑡𝑚 ,𝑧𝑛𝑛 ,𝜓𝑛𝑛) 2
Number of neurons per hidden layer (𝑙𝑠𝑡𝑚 ,𝑧𝑛𝑛 ,𝜓𝑛𝑛) 30

The final results of the PIDL model training are presented in Fig. 11. As can be seen, the chosen hyperparameters lead to an
ccurate result leading to a low plateau at a training loss of 4.2 ⋅ 10−3 and a validation loss of 1.2 ⋅ 10−2. Even though the number of
ata from experiments is limited, we do not observe an over-fitting behavior.

Firstly, the number of internal variables is tuned for the best prediction of the data. The training results are shown in Fig. 12.
16
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Fig. 11. Training- and Validation Loss during the training of the PIDL model. The loss converges towards a plateau after 3500 epochs.

Fig. 12. Final training loss as a function of internal variables.

As can be seen, the optimal number of internal variables for predicting stress–strain behavior under the conditions above is
ight. Subsequently, we proceed with training our deep-learning model, utilizing eight internal variables along with the specified
yperparameters.

Fig. 13(a) and (b) illustrate the stress–strain response of the neat epoxy at various temperatures under cyclic loading–unloading
onditions. A comparison between the predicted and experimental data demonstrates the deep-learning model’s capability to
ccurately predict the highly nonlinear viscoelastic behavior under diverse ambient conditions. This accuracy is observed for the
0% BNPs epoxy system too (see Fig. 14).

A notably stiff behavior is observed at lower temperatures of −20 °C, with stiffness decreasing at higher temperatures.
oncurrently, increased hysteresis is observed with rising temperature, as anticipated, due to higher molecular chain movement
ithin the polymeric matrix at elevated temperatures [58]. Noteworthy, an increase in strains at zero stress level is observed in

he saturated state compared to the dry state at −20 °Cand 23 °C temperatures, adding complexity to the prediction of stress–strain
ehavior. This behavior is not apparent at high temperatures of 60 °C, where the mobility of water molecules is higher [10] and the
oisture content decreases rapidly. The PIDL model can learn the stress–strain behavior even for this complex loading–unloading

ase, yielding accurate results across a wide range of temperatures under dry and saturated conditions. However, some deviations
re observed, particularly at high temperatures, where hysteresis and softening increase, and the PIDL model cannot fully depict
17

he experimental observations.
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Fig. 13. Experimental and predicted stress–strain behavior of the PIDL model (dashed lines) for the neat epoxy at different temperatures.

Fig. 14. Experimental and predicted stress–strain behavior of the PIDL model (dashed lines) for 10% BNPs/nanocomposite at different temperatures.

Validation data
While the training data is expected to perform well, the PIDL model is validated by using additional data outside the training

ata for prediction. As stated above, we use data for 5% BNPs volume fraction and add the experimental data at 50 °C to validate
the model.

Fig. 15 presents the validation results from experiments and the deep-learning model. An accurate prediction of the PIDL model
is observed compared with the experimental data. Noteworthy observations are listed as follows:

• At low temperatures of −20 °C, a stiff behavior is observed. A slightly larger hysteresis can be seen at the saturated state,
which underlines the increased mobility of the polymer chains due to the moisture content. The deep-learning model is able
to predict the behavior and interpolates successfully between 10% and 0% BNPs volume fraction.

• With temperature increase, the viscoelastic behavior increases as the hysteresis increases. Also, a larger softening behavior is
observed at higher temperatures, which is accurately captured by the PIDL model .

• While the PIDL model accurately interpolates between the BNPs volume fractions, noteworthy interpolation can also be
observed at a temperature of 50 °C. The model accurately predicts the peak stresses but tends to overestimate the hysteresis.

Overall, the PIDL model is able to predict a highly nonlinear stress–strain behavior of the material system at hand under different
ambient conditions. To elucidate the behavior in more detailed manner, we present the free-energy, dissipation rate and internal
variable behavior during the cyclic loading–unloading paths.

Fig. 16 shows the free-energy evolution as a function of loading steps. Notably, peaks are observed at each loading maxima, which
is an expected behavior due to increasing stress and strain. A noticeable complex behavior is seen for the dry and saturated states. At
18



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117038B. Bahtiri et al.

c

F
t
c
n
d
d
v
c
i

Fig. 15. Experimental (solid lines) and predicted stress–strain behavior of the PIDL model (dashed lines) for 5% BNPs/nanocomposite at different ambient
onditions.

Fig. 16. Free-energy of the DL model as a function of loading steps. The solid lines represent the dry state and dashed lines correlate to the saturated state.

normal room temperature, the amount of free energy is less in a dry state as compared to a saturated state. However, at both low and
high temperatures, the free energy levels are similar or higher in a saturated state, which also correlates with the behavior of stress
and strain. Maximum energy levels are reached at room temperature, with a subsequent decrease at higher and lower temperatures.
The PIDL model can attain the convexity and non-negativity of the free energy, which are crucial to enforcing thermodynamic
consistency. Fig. 17(a) to (d) presents the evolution of the internal variables for each simulation case. The first observation, which
correlates with the stress–strain behavior, is the scale of the internal variables at different temperatures. The internal variables
increase with increasing temperatures indicating an increase in nonlinearities as the temperature increases. The second observation
is the increase of the internal variables as the loading continues. Due to higher hysteresis and damage of the material at higher
strain, we observe an increase in the internal variables. This correlates with the observations in the experiment because higher
strains lead to higher nonlinearities, which are depicted by internal variables. The only exception here is the simulation at −20 °C (
ig. 17(a)), which also underlines the brittle and almost linear elastic behavior of the stress–strain response. The stress response at
hese temperature levels does not show an increase of hysteresis with increasing strain, and also, no significant softening behavior
an be observed. Since the nonlinear viscoelasticity and softening behavior are implicitly described by internal variables, we do
ot observe these phenomena at low temperatures, and therefore, the internal variables attain the same levels during the whole
eformation path. Thirdly, it should be mentioned that each internal variable shows a highly nonlinear temperature and moisture
ependency, underlining the complex nonlinear behavior of the BNP-reinforced nanocomposite. Finally, the evolution of internal
ariables in the model appears to be mostly symmetric. As one set of internal variables progresses in the positive direction, the
omplementary subset evolves in a parallel negative direction. This symmetry is indicative of a strong dependency between the
19
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Fig. 17. Evolution of the internal variables 𝑧𝛼 as a function of loading steps for different temperatures at dry (solid lines) and saturated (dashed lines) state.

In Fig. 18, the dissipation of the PIDL model is presented throughout the deformation path. We observe the temperature
dependency of the dissipation and a comparable behavior to the evolution of internal variables in Fig. 17. Furthermore, as the
deformation increases in Fig. 17, there is a rapid increase in dissipation, which is related to the rise in internal variables as the
strains increase. We also observe a low dissipation for the −20 °C, suggesting that the material system exhibits brittle behavior
at this temperature. Up to the point of failure, minimal to no nonlinearities are observed, indicating a perfectly elastic material
response. The observation suggests that a lower number of internal or no internal variables is probably sufficient to characterize
the thermodynamic state of the system at low temperatures. Again, the present PIDL model effectively ensures the positivity of
dissipation, thereby enforcing the Clausius–Duhem inequality from Eq. (6).

5. Summary and conclusions

In this study, a PIDL model has been introduced to investigate the mechanical behavior of fiber reinforced nanoparticle-filled
nanocomposites under different ambient conditions at finite deformations. The thermodynamic consistency of the proposed PIDL
model has been enforced and several neural networks have been combined to obtain the free energy. The LSTM has been utilized
to obtain history informations of the deformation path for this particular material system and a feed-forward neural network has
been used to obtain the final internal variables. These serve as an input to another feed-forward neural network together with the
invariants of the right Cauchy–Green tensor, leading to the free-energy value. The final stress tensor has been obtained by using
automatic differentiation, and the internal dissipation has been calculated using an approximation of the rate of internal variables
as presented in Eq. (26). The major results of this study can be summarized as follows:

1. The proposed PIDL model is able to accurately predict the three-dimensional nonlinear behavior of short fiber/epoxy
nanocomposites under different ambient conditions. The model is able to sufficiently extrapolate over the training boundaries
with a loss of 0.008.
20
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Fig. 18. Dissipation of the DL model as a function of loading steps. The solid lines represent the dry state and dashed lines correlate to the saturated state.

2. Classical constitutive models may not be able to fully capture the complex mechanical behavior of materials under varying
temperature and moisture conditions [12,24]. Since the pass forward of the PIDL model contains almost solely matrix
multiplication, with the exception of the automatic differentiation to obtain the stress tensor, the computing times do not vary
a lot and are comparable with classical constitutive models. In contrast, the trained PIDL model can accurately capture the
highly nonlinear mechanical behavior of nanocomposites subjected to cyclic loading and unloading, taking into account the
effects of temperature and moisture content. Moreover, the evolution of the free energy, internal variables, and dissipation
are helpful outputs to explain the mechanical behavior. Therefore, the PIDL model can also serve as an explainable neural
networks.

While the proposed PIDL model shows effective generalization behavior and leads to accurate results, additional improvements
an be made for future work. Firstly, other models have shown that further enforcements of the constitutive conditions can be
ade [37]. Enforcing these conditions increases the generalization of the model further. Also, additional experiments at different

emperatures could lead to better prediction of the hysteresis and softening behavior for the validation data. Especially for the
econd case, we observe a deviation regarding the hysteresis for the 5%BNPs at 50 °C in Fig. 15, which could be solved if additional

temperature ranges are included within the training data. Additionally, an improvement of the PIDL model itself for future works
is the implementation of neural integration, which leads to an increase of accuracy for small- and noisy data [59].

In summary, the proposed PIDL model can be further developed. Similar cyclic loading–unloading experiments to the presented
ones for simple shear would be helpful to calibrate the model in two- or three-dimensional case, making the PIDL model integration
within a finite element framework without the need of synthetic data generation from classical constitutive models a realistic
achievement. Due to the enforcement of the constitutive conditions and thermodynamic consistency, the PIDL model is then capable
to extrapolate from uniaxial loading to shear or biaxial loading [34]. This will result in a accurate PIDL model completely replacing
classical constitutive models.
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ppendix. Derivation of invariants with respect to the right Cauchy–Green deformation tensor

The derivations of the invariants presented in Section 2.2 are calculated as follows:
𝜕I1
𝜕𝐂

= 𝜕tr𝐂
𝜕𝐂

=
𝜕(𝐈 ∶ 𝐂)
𝜕𝐂

= 𝐈 (A.1)

𝜕I2
𝜕𝐂

= 1
2

(

2tr𝐂𝐈 − 𝜕tr(𝐂2)
𝜕𝐂

)

= I1𝐈 − 𝐂 (A.2)

𝜕I3
𝜕𝐂

= I3𝐂−1 (A.3)

𝜕I4
𝜕𝐂

= 𝐚0 ⊗ 𝐚0 (A.4)

𝜕I5
𝜕𝐂

= 𝐚0 ⊗ 𝐂𝐚0 + 𝐚0𝐂⊗ 𝐚0 (A.5)

𝜕I6
𝜕𝐂

= 𝐠0 ⊗ 𝐠0 (A.6)

𝜕I7
𝜕𝐂

= 𝐠0 ⊗ 𝐂𝐠0 + 𝐠0𝐂⊗ 𝐠0 (A.7)

𝜕I8
𝜕C

= 1
2
(𝐚0 ⋅ 𝐠0)(𝐚0 ⊗ 𝐠0 + 𝐠0 ⊗ 𝐚0) (A.8)
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