Liu, Chenying and Albrecht, Conrad M and Wang, Yi and Zhu, Xiao Xiang (2024) Task Specific Pretraining with Noisy Labels for Remote Sensing Image Segmentation. In: International Geoscience and Remote Sensing Symposium (IGARSS). IGARSS 2024, 2024-07-07 - 2024-07-12, Athens.
Full text not available from this repository.
Abstract
In recent years, self-supervision has drawn a lot of attention in remote sensing society due to its ability to reduce the demand of exact labels in supervised deep learning model training. Self-supervision methods generally utilize image-level information to pretrain models in an unsupervised fashion. Though these pretrained encoders show effectiveness in many downstream tasks, their performance on segmentation tasks is often not as good as that on classification tasks. On the other hand, many easily available label sources (e.g., automatic labeling tools and land cover land use products) exist, which can provide a large amount of noisy labels for segmentation model training. In this work, we propose to explore the under-exploited potential of noisy labels for segmentation task specific pretraining, and examining its robustness when confronted with mismatched categories and different decoders during fine-tuning. Specifically, we inspect the impacts of noisy labels on different layers in supervised model training to serve as the basis of our work. Two datasets were constructed to evaluate the effectiveness of task specific supervised pretraining with noisy labels. The findings are expected to shed light on new avenues for improving the accuracy and versatility of pretraining strategies for remote sensing image segmentation.
Item URL in elib: | https://elib.dlr.de/204340/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Task Specific Pretraining with Noisy Labels for Remote Sensing Image Segmentation | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2024 | ||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Status: | Accepted | ||||||||||||||||||||
Keywords: | segmentation, pretraining, noisy labels, encoder, transfer learning | ||||||||||||||||||||
Event Title: | IGARSS 2024 | ||||||||||||||||||||
Event Location: | Athens | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 7 July 2024 | ||||||||||||||||||||
Event End Date: | 12 July 2024 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence, R - Optical remote sensing | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Albrecht, Conrad M | ||||||||||||||||||||
Deposited On: | 27 May 2024 09:24 | ||||||||||||||||||||
Last Modified: | 29 May 2024 15:40 |
Repository Staff Only: item control page