Liu, Chenying und Albrecht, Conrad M und Wang, Yi und Zhu, Xiao Xiang (2024) Task Specific Pretraining with Noisy Labels for Remote Sensing Image Segmentation. In: International Geoscience and Remote Sensing Symposium (IGARSS). IGARSS 2024, 2024-07-07 - 2024-07-12, Athens.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
In recent years, self-supervision has drawn a lot of attention in remote sensing society due to its ability to reduce the demand of exact labels in supervised deep learning model training. Self-supervision methods generally utilize image-level information to pretrain models in an unsupervised fashion. Though these pretrained encoders show effectiveness in many downstream tasks, their performance on segmentation tasks is often not as good as that on classification tasks. On the other hand, many easily available label sources (e.g., automatic labeling tools and land cover land use products) exist, which can provide a large amount of noisy labels for segmentation model training. In this work, we propose to explore the under-exploited potential of noisy labels for segmentation task specific pretraining, and examining its robustness when confronted with mismatched categories and different decoders during fine-tuning. Specifically, we inspect the impacts of noisy labels on different layers in supervised model training to serve as the basis of our work. Two datasets were constructed to evaluate the effectiveness of task specific supervised pretraining with noisy labels. The findings are expected to shed light on new avenues for improving the accuracy and versatility of pretraining strategies for remote sensing image segmentation.
elib-URL des Eintrags: | https://elib.dlr.de/204340/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Task Specific Pretraining with Noisy Labels for Remote Sensing Image Segmentation | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Status: | akzeptierter Beitrag | ||||||||||||||||||||
Stichwörter: | segmentation, pretraining, noisy labels, encoder, transfer learning | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2024 | ||||||||||||||||||||
Veranstaltungsort: | Athens | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 7 Juli 2024 | ||||||||||||||||||||
Veranstaltungsende: | 12 Juli 2024 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Optische Fernerkundung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Albrecht, Conrad M | ||||||||||||||||||||
Hinterlegt am: | 27 Mai 2024 09:24 | ||||||||||||||||||||
Letzte Änderung: | 29 Mai 2024 15:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags