Pölzleitner, Daniel und Ruggaber, Julian und Brembeck, Jonathan (2024) Feature and Extrapolation Aware Uncertainty Quantification for AI-based State Estimation in Automated Driving. In: 35th IEEE Intelligent Vehicles Symposium, IV 2024, Seiten 2756-2762. 35th IEEE Intelligent Vehicles Symposium, 2024-06-02 - 2024-06-05, Jeju, Südkorea. doi: 10.1109/IV55156.2024.10588804. ISBN 979-835034881-1. ISSN 1931-0587.
PDF
3MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10588804
Kurzfassung
State-estimation is an integral method for automated driving as the need for more measurement data for vehicle control increases, despite them not always being directly measurable. In the field of state estimation, AI-based algorithms are increasingly attracting interest. However, an uncertainty measure is pivotal to use AI-based state estimation for safetycritical applications. This paper presents the implementation of a vehicle state estimator based on a recurrent neural network and a novel method for uncertainty quantification. The uncertainty quantification method comprises the sequential evaluation of four parts: feature importance algorithms to remove input features lacking informative value, novelty detection filtering data beyond the range of the training data, and prediction of an uncertainty measure and confidence interval with Monte Carlo dropout. The performance of the proposed approach is demonstrated using AI-based state estimation of the vehicle sideslip angle based on the simulation data from a nonlinear two-track model. The results achieved imply that the novel method can provide a reliable confidence interval and successfully identify cases where the estimation and uncertainty quantification are not trustworthy.
elib-URL des Eintrags: | https://elib.dlr.de/204315/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Feature and Extrapolation Aware Uncertainty Quantification for AI-based State Estimation in Automated Driving | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2024 | ||||||||||||||||
Erschienen in: | 35th IEEE Intelligent Vehicles Symposium, IV 2024 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IV55156.2024.10588804 | ||||||||||||||||
Seitenbereich: | Seiten 2756-2762 | ||||||||||||||||
Name der Reihe: | IEEE Intelligent Vehicles Symposium, Proceedings | ||||||||||||||||
ISSN: | 1931-0587 | ||||||||||||||||
ISBN: | 979-835034881-1 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Control system synthesis; Monte Carlo methods; Recurrent neural networks; Safety engineering; Uncertainty analysis; Vehicles; Automated driving; Confidence interval; Integral method; Measurement data; Novel methods; Safety critical applications; Uncertainty measures; Uncertainty quantifications; Vehicle Control; Vehicle state estimators; State estimation | ||||||||||||||||
Veranstaltungstitel: | 35th IEEE Intelligent Vehicles Symposium | ||||||||||||||||
Veranstaltungsort: | Jeju, Südkorea | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 2 Juni 2024 | ||||||||||||||||
Veranstaltungsende: | 5 Juni 2024 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Systemdynamik und Regelungstechnik | ||||||||||||||||
Hinterlegt von: | Pölzleitner, Daniel | ||||||||||||||||
Hinterlegt am: | 06 Aug 2024 16:32 | ||||||||||||||||
Letzte Änderung: | 21 Okt 2024 10:03 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags