Wischow, Maik und Irmisch, Patrick und Börner, Anko und Gallego, Guillermo (2024) Real-Time Noise Source Estimation of a Camera System from an Image and Metadata. Advanced Intelligent Systems (230047). Wiley. doi: 10.1002/aisy.202300479. ISSN 2640-4567.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300479
Kurzfassung
Autonomous machines must self-maintain proper functionality to ensure the safety of humans and themselves. This pertains particularly to its cameras as predominant sensors to perceive the environment and support actions. A fundamental camera problem addressed in this study is noise. Solutions often focus on denoising images a posteriori, that is, fighting symptoms rather than root causes. However, tackling root causes requires identifying the noise sources, considering the limitations of mobile platforms. In this work, a real-time, memory-efficient, and reliable noise source estimator that combines data-based and physically based models is investigated. To this end, a deep neural network that examines an image with camera metadata for major camera noise sources is built and trained. In addition, it quantifies unexpected factors that impact image noise or metadata. This study investigates seven different estimators on six datasets that include synthetic noise, real-world noise from two camera systems, and real-field campaigns. For these, only the model with most metadata is capable to accurately and robustly quantify all individual noise contributions. This method outperforms total image noise estimators and can be plug-and-play deployed. It also serves as a basis to include more advanced noise sources, or as part of an automatic countermeasure feedback loop to approach fully reliable machines.
elib-URL des Eintrags: | https://elib.dlr.de/204252/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Real-Time Noise Source Estimation of a Camera System from an Image and Metadata | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 26 April 2024 | ||||||||||||||||||||
Erschienen in: | Advanced Intelligent Systems | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1002/aisy.202300479 | ||||||||||||||||||||
Verlag: | Wiley | ||||||||||||||||||||
ISSN: | 2640-4567 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | sensor artificial intelligence; machine learning; noise source estimation | ||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||
DLR - Forschungsgebiet: | D IAS - Innovative autonome Systeme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - SKIAS | ||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Optische Sensorsysteme Institut für Optische Sensorsysteme > Echtzeit-Datenprozessierung | ||||||||||||||||||||
Hinterlegt von: | Irmisch, Patrick | ||||||||||||||||||||
Hinterlegt am: | 15 Mai 2024 07:51 | ||||||||||||||||||||
Letzte Änderung: | 15 Mai 2024 07:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags