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1. Introduction

Machines in various fields (e.g., vehicles,
robots) are increasingly moving away from
manual control toward autonomy, which
implies that they should ensure proper
operation (e.g.,[1–3]). This applies to each
component of a machine, and in particular
to its perception system, as all subsequent
actions depend on it. Cameras are the pre-
dominant sensors for perceiving the envi-
ronment and are therefore the subject of
our study. As any physical sensor, a camera
is afflicted with noise, whose influence on
subsequent computer vision tasks has jus-
tified extensive research. To guarantee a
machine’s dependability and durability,
which in turn guarantees the safety of both
humans and machines, counteracting
noise is mandatory. However, to counteract
noise in an active system, one needs first to
identify and quantify its root causes.

Previous studies approach this task by
using estimated noise levels to denoise
images.[4–8] This process has matured for
various noise models and use cases, but

they often yield undesired visual artifacts. That is, they only fight
symptoms and do not target noise source identification, although
noise sources and countermeasures are well researched,[9]

Section 7. This can be attributed to three reasons: 1) the camera
system control is often inaccessible, which makes denoising
more applicable if only image datasets are available. 2) The need
for more autonomy of machines with consumer-grade cameras
emerged only recently and noise could only be approached man-
ually so far. 3) Reliable and real-time noise source estimation is
challenging; it relies on accurate image noise estimation and
extensive noise models, which gained interest and matured only
in recent years (see Section 2). Moreover, noise source identifi-
cation from an image alone is ambiguous, since most noise sour-
ces follow similar statistics, auxiliary data is needed for
disambiguation. Last but not least, at present, only deep neural
networks (DNNs) are able to perform the implied complex oper-
ations (extensive noise modeling and heterogeneous data fusion)
in real time.

This article proposes a real-time, memory-efficient, and reli-
able noise source estimator (Figure 1). During operation, it ana-
lyzes single images together with metadata from the camera
system and quantifies the respective contributions to major noise
sources of the system. Moreover, we include a verification mech-
anism that quantifies noise mismatches between the metadata
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Autonomous machines must self-maintain proper functionality to ensure the
safety of humans and themselves. This pertains particularly to its cameras as
predominant sensors to perceive the environment and support actions. A fun-
damental camera problem addressed in this study is noise. Solutions often focus
on denoising images a posteriori, that is, fighting symptoms rather than root
causes. However, tackling root causes requires identifying the noise sources,
considering the limitations of mobile platforms. In this work, a real-time,
memory-efficient, and reliable noise source estimator that combines data-based
and physically based models is investigated. To this end, a deep neural network
that examines an image with camera metadata for major camera noise sources is
built and trained. In addition, it quantifies unexpected factors that impact image
noise or metadata. This study investigates seven different estimators on six
datasets that include synthetic noise, real-world noise from two camera systems,
and real-field campaigns. For these, only the model with most metadata is
capable to accurately and robustly quantify all individual noise contributions. This
method outperforms total image noise estimators and can be plug-and-play
deployed. It also serves as a basis to include more advanced noise sources, or as
part of an automatic countermeasure feedback loop to approach fully reliable
machines.
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and the image noise, which serves for self-control and detection
of unexpected events (e.g., camera damages). Without loss of
generality, our study analyzes: time-varying noise (since any
time-invariant noise is usually mitigated by camera calibration),
and spatially varying noise (since image patches are used).

We make the following technical contributions: 1) we propose
a real-time, memory-efficient, and reliable DNN-based noise
source estimator (Section 3) that is able to quantify contributions
of different camera noise sources and to detect unexpected fac-
tors that impact image noise or metadata. 2) We demonstrate
seven different estimators in comprehensive experiments on
six datasets and two real camera systems (Section 4). Our experi-
ments investigate synthetic noise, real-world noise extracted
from camera systems, and qualitative field campaigns, and
also create unexpected noise events in images or metadata.
3) We provide the source code of our experiments, the data used
for training and benchmarking, and the ready-to-use estimators
(https://github.com/MaikWischow/Noise-Source-Estimation).

2. Related Work

We first survey general image noise level estimators and then
discuss noise models from related studies that account for mul-
tiple noise sources and utilize camera metadata.

2.1. Noise Level Estimation

Motivated by applications in the field, we focus our study on esti-
mators that assume unknown noise levels (i.e., blind estimation)
using single images. Thesemay be further divided into traditional
and learning-based approaches. Traditional approaches comprise
one or more of the following paradigms: 1) block-based[10,11]

(estimate noise using low-textured regions), 2) filtering-
based[10,12] (subtract a low-pass filtered image and estimate noise
from high frequency components), and 3) transform-based[4,13,14]

(represent the image in a different space, e.g., using wavelets, and
estimate noise therein). All have their own pros and cons, with
over-/underestimation in low/high noise and textured areas.

Learning-based methods either determine the noise level
explicitly[6,8,15] (e.g., using residual learning and scale pyramids)
or implicitly[5,16] (e.g., with generative adversarial networks) as
part of an end-to-end denoising pipeline. In terms of real-image
denoising performance, traditional methods are still considered
the state of the art, closely followed by learning-based methods.[17]

2.2. Noise Models

Driven by space camera systems, extensive noise models on a
subatomic level have been developed in recent decades.[9,18,19]

However, applications on earth tend to employ simpler models,
as follows.

The majority of research presumes an additive white Gaussian
noise source.[4,5,8,10–14] Given the influence of light on camera
noise,[20] signal-dependent noise models have been developed
considering 1) photon shot noise and 2) noise due to camera elec-
tronics (e.g., the Poissonian–Gaussian noise model).[6,15,21]

A special case is the noise level function (NLF) that characterizes
the dependence of noise levels on image intensity.[22–24]

To account for nonlinear camera processes that affect noise
statistics,[25] some works employ the camera response function
for NLF estimation; they describe a camera’s physical processing
as a black box in a single function.[26,27]

A few noise studies break down the noise caused by camera
electronics and therefore consider more than two noise
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Figure 1. Proposed camera noise source estimation. Different noise sources affect the image formation process of a scene. Our noise source estimator
quantifies major noise source contributions σ̂i∈fPN;DCSN;RNg, unexpected noise ξ̂M=I, and the total image noise σ̂Total using an image and camera metadata.
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sources,[7,28–30] but generally “[…] noise sources caused by digital
camera electronics are still largely overlooked, despite their sig-
nificant effect on rawmeasurement”.[28] The works in refs. [28,30]
propose “simpler” extensive noise models that account, e.g., for
the camera system gain, read noise, or quantization noise, which
are partially analyzed in more detail. More sophisticated noise
models from refs. [7,29] also address camera specifics like the
shutter mechanism, individual color channel biases, or differen-
tiate between analog/digital gain. There have also been attempts
to approximate noise models by DNNs[31–34] for synthesis, but[29]

shows that “The DNN-based [noise generators] still cannot out-
perform physics-based statistical methods”.

All the aforementioned models calibrate their parameters
(temperature, exposure time, International Organization for
Standardization gain, …) offline and only implicitly account
for changing camera parameters during training data generation,
but they do not consider camera parameters at inference time.
We investigate this gap and show in our experiments on
DNN noise level estimation that the system is only able to iden-
tify the contribution of different noise sources when these
parameters are available at runtime. Furthermore, to the best
of our knowledge, our approach is the first estimator (traditional
or learning based) to explicitly quantify not only two (photon shot
noise [PN], other) but four (PN, dark current shot noise [DCSN],
readout noise [RN], other) individual noise source contributions.

3. Noise Source Estimation

Given a possibly corrupted image patch I 0 and metadata from the
camera system, the goal of our image noise source estimator is to
determine the image’s total noise level:

σTotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2PN þ σ2DCSN þ σ2RN

q
þ ξM=I (1)

and its individual components: the PN level σPN, the DCSN level
σDCSN, the RN level σRN, and a component ξM=I that quantifies
unexpected (i.e., residual) noise (details about noise types are
in Supporting Information). We assume grayscale patches, of
size 128� 128 px. Next, we describe the base architecture
(Section 3.1), subsequently detail our extensions (Section 3.2),
and lastly focus on training the noise source estimator
(Section 3.3).

3.1. Base Architecture

Ourmethod is inspired by the deep residual noise-level estimator
(DRNE) from ref. [6], which has been shown to be superior com-
pared to traditional state-of-the-art approaches in terms of run-
time and accuracy.[35] It takes an red-green-blue (RGB) image
patch as input and predicts a pixel-wise noise level. It consists
of 16 convolution layers (with 15 of them separated into three
residual blocks). Pooling layers, interpolation operations, and
convolution strides larger than 3� 3 are omitted to keep the
focus on low-level noise features.

We customize the aforementioned architecture so that the
neural network takes grayscale images as input and estimates
only one noise level per image patch (left part of Figure 2).
Specifically, we replace the first 3� 3� 3 convolution kernel
by a 3� 3 one, replace the last residual block by a fully connected
block (FCB) with three layers having 32, 16, and 8 neurons,
respectively, and apply global max pooling before the FCB to
fit the dimensions. As a consequence, we are able to reduce the
total number of network parameters by 35%, from 519 to 336 k
while achieving similar estimation accuracy as ref. [6]. Lastly, we
retrain the network as described in Section 3.3. In the upcoming
sections, we refer to this customized model as DRNEcust..

3.2. Noise Source Estimation

The previous method estimates the noise level of the patch,
but does not identify its origin (i.e., type and amount of noise),
which is critical information for a camera’s maintenance
operation. To identify the noise origin, additional information
is needed alongside the noised image. Our approach is to train
the baseline network on a physical noise model[19] that
relates image intensity and camera metadata to different noise
distributions. To this end, the baseline network needs to be
extended to separate the different noise contributions and to pro-
cess image and metadata together. Moreover, we expect an
improved noise estimation accuracy as a result of learned aware-
ness of separate noise sources and thus increased physical
consistency.

In the following, we describe the three major extensions to the
previous method for noise source estimation (right part of
Figure 2): noise type identification (with or without the inclusion
of camera metadata) and quantification of unexpected noise.

+

2x
Preprocess 
Metadata

+

+

+

+

Figure 2. Noise level estimator versus proposed noise source and level estimator. Left: customized baseline estimator DRNEcust., which predicts the
noise level of the input image’s total noise. Right: proposed noise source estimator that additionally employs camera metadata and predicts the noise
levels of four different noise types. Architectural changes from the baseline are highlighted.
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3.2.1. Noise Type Identification/Separation

In a first step, we duplicate the FCB and its preceding global max
pooling layer to get three independent network branches. Each
branch will predict the noise level of one noise type.

3.2.2. Inclusion of Camera Metadata

In a second step, we separate the camera’s metadata pertaining to
the noise model into fixed and variable metadata (see Table 1).
We assume the fixed metadata to be constant at training and
inference times due to multiple reasons: 1) only parameters that
in a sensitivity analysis lead to significant noise changes in the
noise model are picked as variable parameters (see supp. mate-
rial). From these parameters, we also fix 2) the offset, for simplic-
ity, and the ones that iii) we consider as too difficult to obtain
from a consumer-grade camera.

For the variable metadata, we survey existing camera systems
in the literature to determine parameter ranges that are typical
for our application scenarios (excluding unique systems for spe-
cialized use cases). The variable parameters are arranged into
“minimal” and “full” metadata. We consider minimal metadata
as easy to obtain (camera gain [digital gain for simplicity] and
exposure time are typically configurable, while most camera sys-
tems comprise a temperature sensor to approach dark current
compensation) and full metadata as more comprehensively
include parameters often provided by the camera manufacturer.
For comparison, we derive three models, where each one is fed
with different metadata: one without any (w/o-Meta), one with
minimal (Min-Meta), and one with full metadata (Full-Meta).

In preparation to use the metadata as input for the neural net-
work, each parameter is first normalized to a floating point num-
ber in the range [0,1] (using the physical units, and the respective
minimum and maximum values in Table 1). Subsequently, all

parameters are combined and passed as a single array to the neu-
ral network (see attached source code for details). Inside the net-
work, the metadata subset associated to its respective noise type
is then concatenated with the output of the corresponding global
max pooling layer and passed into its FCB. Note that using FCBs
over the noise model itself to estimate the noise levels is 1) fast
(using a graphics processing unit (GPU)), 2) allows us to train on
real noise data that is not covered by the noise model, and
3) allows us to perform non-trivial feature-wise fusion with
the feature maps from the processed input image.

3.2.3. Unexpected Noise Quantification

In the proposed system (Figure 2, right), we add a fourth FCB
that quantifies unexpected noise, i.e., when the metadata does
not agree with the considered image noise model. If we ensure
that image noise is only generated inside the camera system (by
preventing image pre- and post-processing) and assume a radio-
metrically calibrated camera (including a correct determination
of the relevant metadata), there are two reasons for noise-meta-
data mismatch: 1) corrupted metadata (e.g., by camera malfunc-
tioning) or 2) unmodeled noise sources (e.g., also by hardware
damages, or a general mismatch between the noise model
and the real image noise).

Specifically, we train this fourth FCB to quantify

ξM=I ≐ σModel � σImage

¼ð1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2PNðM1Þ þ σ2DCSNðM2Þ þ σ2RNðM3Þ

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2PNðM0

1Þ þ σ2DCSNðM0
2Þ þ σ2RNðM0

3Þ
p

(2)

with ξM=I normalized to [�1,1] for training, the total image
noise σImage, the total modeled noise σModel, and metadata sets
M1, : : : ,M3, and altered sets M0

1, : : : ,M
0
3 having a different ran-

domly generated camera gain. The metadata sets Mð⋅Þ are only
fed to the FCBs (corresponding to noise level σModel) while the
altered sets M0

ð⋅Þ are used to corrupt the image (with correspond-

ing noise level σImage). In this way, the network learns to capture
the mismatch between the metadata and the image noise in ξM=I.

With all the aforementioned extensions, the number of net-
work parameters slightly increases, from 336 to 345 k.

3.3. Training Details

We utilize an almost noise-free dataset with natural images
(TAMPERE21[36]), whose noise variance is ensured to be
σ2 < 1. These images are first augmented by a small random
image intensity change of [�20,20] DN and afterward corrupted
with noise generated by the noise model of ref. [19]. Each image
patch is corrupted independently with its own set of randomly
generated variable metadata. In this way, we generate ≈103 k
data tuples to train the estimators in a supervised manner.
Our motivation to train on simulated noise only is to cover a large
extent of different metadata and to keep the limited real noise
data available for model evaluation. The network’s branches
are collectively trained utilizing the mean squared error loss
function along with the Adam optimizer[37] and an initial

Table 1. Camera metadata used for noise source estimation. We split
these into fixed and variable parameters, and consider only variable
ones. Fixed parameters and all parameter definitions can be found in
Supporting Information.

Variable parameter Value range

Minimal metadata

Camera gain [0,24] dB

Exposure time [0.001, 0.2] s

Sensor temperature [0,80] °C

Full metadata

Dark signal figure of merit (FoM) [0,1]

Full well capacity [2,100]� 103 e�

Pixel clock rate [8,150]� 106 Hz

Sense node gain [1,5]� 10�6 mm

Sense node –

Reset factor [0,1]

Sensor pixel size [0.0009, 0.01] mm

Sensor type {CCD, CMOS}

Thermal white noise [1,60]� 10�9 Hz
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learning rate of 10�4. Further implementation details and the
training configuration can be found in the code base.

4. Experimental Section

We first described the datasets used and the image noise applied
(Section 4.1). Depending on whether a dataset includes ground
truth (GT) labels or not, we conducted either quantitative or qual-
itative experiments. Our quantitative experiments comprised
performance evaluations on simulated and real-world data
(Section 4.2). In qualitative experiments, we evaluated our meth-
ods in real-field campaigns and on three use cases of unexpected
noise (Section 4.3). In addition to the ability to quantify
individual noise sources, we additionally demonstrated the
improved total noise estimation performance on the downstream
task of real-world image denoising (Section 4.4). Subsequently,
we analyzed the effects of each camera metadata on noise esti-
mation in comparison to the applied theoretical noise model
(Section 4.5). Finally, we provided runtime measurements
(Section 4.6).

We compared our proposed estimators against 1) Bþ F,[10]

DRNEcust., principal component analysis (PCA)[4] and Poisson-
Gaussian estimation-net (PGE-Net)[15] in the case of σTotal,
2) PGE-Net for σPN, and 3) noise model predictions from
the respective metadata for all individual noise levels
σi∈fPN;DCSN;RNg. Note that PGE-Net was only applicable in the
quantitative experiments, since it required (unnoised) GT images
to calculate σ̂i∈fPN;Totalg.

All experiments were executed on an Intel Xeon W-2145 cen-
tral processing unit and an NVIDIA Quadro Ray tracing texel
eXtreme 6000 GPU, with the neural networks running on the
GPU. Noise levels were reported as digital numbers in the range
½0, 255�DN.

4.1. Datasets

We augmented four datasets with GT labels and two datasets
with pseudo GT labels (Figure 3).

4.1.1. Datasets with GT

We employed one simulated and three real-world datasets: Sim,
KITTI,[38] TAMPERE17,[39] and Udacity.[40] Sim was created with
the simulator[41] to provide accurate GT for noise estimation. It
comprised 1000 images of a village environment acquired from
different viewpoints and included vehicles, such as cars and
bikes. Similar to our training dataset TAMPERE21 (Section 3.3),
TAMPERE17 provided 300 natural images with a controlled
noise level of σ2 < 1. From TAMPERE17, we used the grayscale
version. KITTI and Udacity contained images from transporta-
tion scenarios. From KITTI, we used the annotated object detec-
tion sub-dataset and from Udacity sub-dataset #2. We considered
only the first 1000 images from both datasets to match the num-
ber with Sim and reduce computation time. Depending on the
respective image size, one image yielded several image patches.

Note that KITTI and Udacity did not include noise control.
To assess how much noise both original datasets already con-
tained, we applied three state-of-the-art noise level estimators
(cf. Section 2). The results in Figure 4 indicated similarly small
noise levels for Udacity as for both TAMPERE datasets, but sig-
nificantly higher noise for KITTI. For this reason, we considered
Udacity in the main article and provided KITTI results in
Supporting Information.

We corrupted all datasets with simulated or real-world noise.
In the simulated case, we added noise to the images like our
training dataset (cf. Section 3.3). In the real-world case, we
generated in total 12 k RN and DCSN image tuples ðIRN, IDCSNÞ
with about 600 different metadata sets from two different camera
systems (we investigated several more camera types, e.g.,
Realsense D435i RGB and Huawei P30, but we reached the point
where camera manufacturers would only provide metadata for
private usage (i.e., not for publication) behind an non-disclosure
agreement. Thus, we could not include them in this article) that
we abbreviated according to their implemented camera sensors:
ICX285[42] and EV76C661[43] (Figure 5). The first one was con-
sidered a scientific-grade charge-coupled device (CCD) and the
latter was an industrial-grade CMOS camera system. PN was cal-
culated synthetically as the quantum nature of light determines

Sim Udacity

Cellar Parking Lot

TAMPERE17TAMPERE17

KITTI

Figure 3. Datasets. Exemplary image snippets from Sim (896� 768 px), TAMPERE17 (512� 512 px), Udacity (1920� 1200 px), KITTI (1242� 375 px),
Cellar, and Parking Lot (ICX285: 1360� 1024 px, EV76C661: 1280� 1024 px).
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PN to strictly follow the Poisson distribution. Details about the
real-world noise acquisition, noise post-processings, and used
metadata could be found in Supporting Information.

4.1.2. Datasets without GT

We collected two datasets from field campaigns without GT
labels: Cellar and Parking Lot. Both datasets contained about
1000 grayscale images from respective eponymous environments
and were recorded with both camera systems. We ensured high
noise levels by applying the minimum exposure time of 1ms
(to capture low but detectable signals), maximum gain of 24 dB
(to strongly amplify signal and noise without saturation), and by
disabling all image post-processing (that could reduce noise).

We further evaluated the fourth noise type ξM=I as part of these
field campaign experiments to demonstrate the detection of
unexpected noise during operation time. Therefore, we split
these experiments into two cases: ξM=I ¼ 0 and ξM=I 6¼ 0.
The case ξM=I 6¼ 0 was further subdivided into ξM=I < 0 and
ξM=I > 0. For ξM=I < 0, we simulated an additional image noise
source by adding randomly generated Gaussian noise
N ðμ ¼ 0, σ ¼ 5DNÞ to the images. For ξM=I > 0, we increased
the model noise by synthetically doubling the value of the camera
metadata thermal white noise. This parameter adjustment could
be interpreted as a mis-calibration of the camera sensor’s readout
profile or a malfunctioned sensor component (e.g., the source
follower). Moreover, we demonstrated the case of doubling
the metadata sensor temperature in Supporting Information.

4.2. Quantitative Experiments

Metrics. We followed[44] and evaluated our noise source estima-
tors in terms of accuracy Bias ≐ jE½σ � Eðσ̂Þ�j, robustness

Std ≐ ðE½ðσ̂ � Eðσ̂ÞÞ2�Þ1=2, and overall performance
RMS ≐ ðBias2ðσ̂Þ þ Std2ðσ̂ÞÞ1=2, where σ̂ is the estimated noise
level and σ is the true noise level. Smaller Root Mean Square
(RMS), Bias, and Std values indicate better performance.

4.2.1. Simulated Noise

The performance on the synthetically added noise datasets are
summarized in Table 2, while mean noise estimation results
on Sim are depicted in Figure 6.

Let us focus on results from Table 2 first. Among the reference
methods, we observed that PGE-Net performed worst due to
underestimation (cf. Figure 6), which agrees with ref. [15].
We could further see that DRNEcust. generally produced better
results than PCA for all metrics, and both better yielded results
than Bþ F. This observation matched ref. [35]. Considering our
proposed methods, we observed that all three estimators
accurately and robustly determine σTotal, where Full-Meta was
generally best, and Full-Meta and w/o-Meta performed slightly
more robust than Min-Meta (smaller Std). In comparison to
the reference methods, Full-Meta was on par with DRNEcust..
When it came to noise source estimation, Full-Meta
performed best. Both accuracy and robustness span sub-intensity
levels for all three noise sources in all three datasets. w/o-Meta
and Min-Meta also accurately quantified the single-noise types
within sub-intensity levels on average (small bias). However, they
had worse robustness in all datasets, particularly for DCSN and
RN (large Std). We considered that this might be a problem of
insufficient model capacity, but increasing the number of layers
and neurons of the FCBs did not produce any change. We further
made two detailed observations: all three methods estimated PN
best, and Min-Meta determined the DCSN amount more
robustly than w/o-Meta. We attributed the former observation
to the strong link between image intensity and PN in the
noise model, and the weaker influence of any metadata.
However, only Full-Meta obtained the camera’s full well capacity
parameter, which seemed to slightly improve PN estimation. The
more robust DCSN estimation performance of Min-Meta could
be ascribed to its access to temperature and exposure time meta-
data, since both had a major impact on thermal noise.[19]

The significance of metadata on separating the noise sources
was further underpinned by the minor performance on RN
estimation (as the minimal metadata only had a minor
impact on the noise model) and by the prevailing performance

Prosilica GC1380H
(Sony ICX285, 

CCD Image Sensor)

Ximea MQ013RG-E2 
(E2V EV76C661 

ABT-EQTR, 
CMOS Image Sensor)

Figure 5. Camera systems. ICX285 is attached on an autonomous robotic
platform and EV76C661 on an inspection helmet.
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Figure 4. Noise estimation of uncorrupted KITTI and Udacity datasets. The reference methods estimate significant noise in KITTI images (σ̂ ≤ 5) and
low noise in Udacity data (σ̂ ≤ 1.25).
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of Full-Meta, which had access to the largest amount of
metadata.

Figure 6 confirms the results of Table 2. It further indicates
the increasing bias for w/o-Meta, the increasing Std (spread of
the distributions) for w/o-Meta and Min-Meta with increasing
noise levels σi∈fTotal;PN;DCSN;RNg.

In summary, only Full-Meta with access to the full set of
camera metadata could accurately and robustly quantified the
contribution of each noise source. Although all variants of the
proposed method could estimate the total noise level well,
the lack of camera metadata for w/o-Meta and Min-Meta made
it difficult to disambiguate the origin of the noise (i.e., identify
the noise sources).

4.2.2. Real-World Noise

Next we discussed the estimation performances of the real-world
DCSN/RN produced by ICX285 and EV76C661 using Table 3
and Figure 7. Note that these two noise-optimized sensors pro-
duced lower noise levels compared to our simulated sensors
(σi∈fDCSN,RNg ≤ 5DN). Both sensors lead to similar results;
hence, we focused on ICX285 here and considered EV76C661
in Supporting Information.

In contrast to the fully simulated noise experiments (Table 2),
the absolute DCSN and RN estimation performances of
w/o-Meta and Min-Meta seem to have improved in Table 3.
These results should not be overrated due to the generally
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Figure 6. Noise source estimation on synthetic noise (dataset: Sim, camera: random). Each dot represents the mean noise estimation of one image. The
plots of DRNEcust. and PCA are omitted in the case of σ̂Total due to a strong similarity with the other plots (to avoid clutter).

Table 2. Noise source estimation on synthetically corrupted datasets. The simulated noise is generated on the basis of randomly simulated camera
sensors. The best results per method and dataset are highlighted in bold.

Photon shot noise DCSN Readout noise Total noise

Bias Std RMS Bias Std RMS Bias Std RMS Bias Std RMS

Sim Bþ F[10] – – – – – – – – – 2.51 3.00 3.91

DRNEcust. – – – – – – – – – 0.07 0.23 0.23

PCA[4] – – – – – – – – – 0.75 1.07 1.30

PGE-Net[15] 1.74 3.02 3.49 – – – – – – 3.23 4.36 5.43

W/o-Meta 0.01 0.75 0.75 0.35 4.23 4.24 0.35 3.40 3.42 0.50 1.22 1.32

Min-Meta 0.05 0.75 0.76 0.13 2.82 2.83 0.13 3.38 3.39 0.47 0.97 1.08

Full-Meta 0.09 0.07 0.09 0.07 0.34 0.35 0.09 0.46 0.47 0.16 0.29 0.33

Tamp.17 Bþ F[10] – – – – – – – - – 2.22 4.19 4.74

DRNEcust. – – – – – – – – – 0.21 0.44 0.49

PCA[4] – – – – – – – – – 2.81 3.04 4.14

PGE-Net 2.06 1.72 2.68 – – – – – – 3.15 3.34 4.59

W/o-Meta 0.16 0.84 0.85 0.07 3.11 3.11 0.02 3.04 3.04 0.02 1.18 1.18

Min-Meta 0.09 0.82 0.83 0.21 2.01 2.02 0.39 3.73 3.75 0.02 1.05 1.05

Full-Meta 0.10 0.13 0.16 0.09 0.29 0.30 0.17 0.37 0.41 0.05 0.43 0.43

Udacity BþF[10] – – – – – – – – – 1.09 2.19 2.44

DRNEcust. – – – – – – – – – 0.24 0.50 0.54

PCA[4] – – – – – – – – – 0.70 0.93 1.17

PGE-Net 1.58 2.05 2.59 – – – – – – 3.04 3.70 4.79

W/o-Meta 0.05 0.54 0.54 0.28 3.31 3.33 0.45 2.54 2.58 0.44 1.39 1.46

Min-Meta 0.19 0.66 0.68 0.03 2.21 2.21 0.27 2.38 2.40 0.11 0.88 0.89

Full-Meta 0.06 0.14 0.15 0.04 0.30 0.30 0.10 0.44 0.45 0.14 0.42 0.45
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smaller noise levels and because the errors in the fully
simulated cases started to majorly increase for noise levels
σi∈fDCSN,RNg ≥ 5DN. However, we observed two significant
relative performance changes: Full-Meta worsened for RN and
w/o-Meta improved for DCSN/RN. We attributed the change
of both methods in the case of RN to the simulation-reality
gap of the noise model that w/o-Meta coincidentally profits from
(cf. Figure 7), because both methods were trained on simulated
data only where it was shown that Full-Meta matched it better
(Table 2). In the case of DCSN, the better performance of
w/o-Meta was misleading, since only Full-Meta seemed to
approximately fit the GT, while the others failed (see Figure 7).

These errors also propagated to the overall noise estimation. The
estimations of the simulated PN did not change significantly.

In summary, despite the simulation-to-reality gap observed in
these experiments, the access to the full metadata still led to the
best results in terms of noise source quantification, thus provid-
ing evidence for the generalization capabilities of the method.

4.3. Experiments on Real-world Platforms

We recorded datasets Cellar and Parking Lot with camera sys-
tems ICX285 and EV76C661 in field campaigns (Figure 5).
For comparison, we used Bþ F, DRNEcust., and PCA in the case

Table 3. Noise source estimation on real-world noise extracted from a Sony ICX285 CCD Sensor. DCSN and RN with corresponding metadata were
recorded from the camera. PN was generated synthetically using the real metadata. The best results per method and dataset are highlighted in bold.

Photon shot noise DCSN Readout noise Total noise

Bias Std. RMS Bias Std RMS Bias Std RMS Bias Std RMS

Sim Bþ F[10] – – – – – – – – – 3.12 1.60 3.51

DRNEcust. – – – – – – – – – 0.17 0.28 0.33

PCA[4] – – – – – – – – – 1.11 0.82 1.38

PGE-Net[15] 3.01 1.22 3.25 – – – – – – 3.11 1.26 3.35

W/o-Meta 0.63 0.63 0.89 0.68 0.59 0.90 0.43 0.61 0.75 0.08 0.27 0.29

Min-Meta 1.03 0.21 1.05 0.80 0.86 1.18 0.26 1.35 1.38 0.77 0.65 1.00

Full-Meta 0.14 0.09 0.17 0.15 0.45 0.47 0.82 0.95 1.25 0.04 0.19 0.20

Tamp.17 Bþ F[10] – – – – – – – – – 2.71 3.54 4.43

DRNEcust. – – – – – – – – – 0.37 0.40 0.55

PCA[4] – – – – – – – – – 3.07 2.77 4.14

PGE–Net[15] 3.03 1.35 3.32 – – – – – – 2.74 1.71 3.23

W/o-Meta 0.46 0.68 0.82 0.83 0.55 1.00 0.74 0.76 1.06 0.26 0.53 0.59

Min-Meta 0.95 0.28 0.99 0.85 0.82 1.18 0.37 1.36 1.41 0.59 0.78 0.98

Full-Meta 0.22 0.14 0.26 0.14 0.41 0.44 0.85 0.87 1.21 0.13 0.36 0.38

Udacity Bþ F[10] – – – – – – – – – 0.33 0.58 0.66

DRNEcust. – – – – – – – – – 0.01 0.53 0.53

PCA[4] – – – – – – – – – 0.14 0.63 0.64

PGE-Net[15] 2.44 1.02 2.64 – – – – – – 3.00 1.48 3.35

W/o-Meta 0.44 0.49 0.66 0.64 0.57 0.85 0.27 0.65 0.70 0.04 0.27 0.27

Min-Meta 0.63 0.21 0.66 0.76 0.84 1.14 0.28 1.33 1.36 0.41 0.68 0.79

Full-Meta 0.04 0.10 0.11 0.17 0.44 0.47 0.87 0.97 1.30 0.25 0.30 0.39
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Figure 7. Noise source estimation on real-world noise (dataset: Sim, camera: ICX285). Compare to Figure 6.
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of total noise and the noise model predictions with live recorded
metadata for the individual noise sources. Since we observed
similar results for both cameras and both datasets, we focused
on ICX285 and Cellar here, and considered the rest in
Supporting Information. We first evaluated the raw dataset
(Section 4.3.1) and subsequently tested three altered versions
with unexpected noise (Section 4.3.2).

4.3.1. Expected Noise (σModel ≈ σImage)

Let us first focus on the noise source identification (top row in
Figure 8). We see that Full-Meta matches the noise model best
with jσ̂Full�Meta � σ̂Referencej < 1DN in each noise case, followed
by Min-Meta and w/o-Meta. These results were generally in
accordance to the simulated noise evaluations in Section 4.2.1.
The only significant difference we observed was that Min-
Meta matched the relative value range of the PN noise model
curve better than w/o-Meta (i.e., smaller Std). This could be
explained with the camera gain parameter that Min-Meta
obtained as one key parameter in the noise model to determine

PN (already is indicated on the simulated ICX285 in Table 3).
The residual noise plot depicted only a small mismatch between
the noise model and the detected image noise for Full-Meta and
Min-Meta. Only the nearly constant value of w/o-Meta indicated
that it did not learn to detect any residual noises. From this resid-
ual noise estimation of Full-Meta (and later results from
Figure 8), we assumed for Cellar that

ξM=I ≈ 0⇒
ð2Þ

σModel ≈ σImage (3)

In the total noise inspection (Figure 9), we considered only Full-
Meta from our proposed methods to avoid clutter. We saw from
both plots that Full-Meta produced similar estimations as the ref-
erence methods. Hence, we considered its results as plausible.

In summary, the results agreed with those of the synthetic
noise experiments, meaning that our model was applicable to
an actual real-world robotic platform. The more metadata were
available, the better the noise source estimation of all noise types
(with Full-Meta as the best method).
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Figure 8. Noise source estimation with and without unexpected noise (dataset: Cellar, camera: ICX285). Top row: estimation on the uncorrupted dataset.
Middle row: image noise increased by random Gaussian noiseN ðμ ¼ 0, σ ¼ 5DNÞ. Bottom row: model noise increased by doubling camera parameter
thermal white noise.
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Figure 9. Total noise estimation (datasets: Cellar and Parking Lot, camera: ICX285). Compare the left plot to Figure 8.
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4.3.2. Unexpected Noise (σModel 6¼ σImage)

Here, we evaluated three scenarios where we synthetically
increased image noise or model noise to reach ξM=I < 0 (i.e.,
σModel < σImage) or ξM=I > 0 (i.e., σModel > σImage), respectively.
We investigated these scenarios on the basis of the raw Cellar
dataset for that we assumed that the applied noise model fol-
lowed the actual image noise (i.e., Equation (3): ξM=I ≈ 0).

One scenario of the form σModel < σImage: in our first scenario,
we increased the image noise by adding randomly sampled
Gaussian noise from N ðμ ¼ 0, σN ¼ 5DNÞ to the raw Cellar
images. Note that this Gaussian noise was statistically indepen-
dent from the other image noise sources and so its noise level
was added in quadrature to the new total image noise level
σImageþN (cf. (1)). We calculated the resulting GT ξM=I as

ξM=I ¼ð2Þ σModel � σImageþN ≈
ð3Þ

σModel �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Model þ σ2N

q
(4)

The middle row of Figure 8 illustrates the results. We expected
only a reduction of ξM=I and unchanged values otherwise, with
respect to the first row. It could be seen that only Full-Meta
captured the unexpected noise (note the initial error of ≈0.5DN
was propagated), whereas w/o-Meta remained unchanged
(cf. Section 4.3.1) and Min-Meta incorrectly estimate increased

values. Furthermore, w/o-Meta and Min-Meta split σN among
the other noise sources (especially Min-Meta increases σ̂RN
significantly). Only Full-Meta maintained its noise source esti-
mated values.

Two scenarios of the form σModel > σImage: in this second test,
we increased the model noise by doubling the metadata thermal
white noise. This parameter only affected Full-Meta. The new GT
noise levels were calculated using the noise model. (in the third
test, we prepared an example with a doubled metadata sensor
temperature, however, without new findings; thus, it was treated
in Supporting Information).

The results are shown in the bottom row of Figure 8. In this
case, we expected an increasing σ̂RN in accordance to the
increased thermal white noise, an increasing ξ̂M=I (which indi-
cated the unexpected higher model noise) and unchanged values
otherwise. We could see that Full-Meta met these expectations
(note the initial propagated error here as well).

We concluded that unexpected noise in either images or from
metadata could only be reliably quantified with the full set of var-
iable camera metadata.

4.4. Experiments on Real-World Image Denoising

Our proposed noise source estimator was able to improve total
image noise estimation (see Table 2 and 3), thereby offering

Table 4. Denoising performance for real-world images (camera: ICX 285). Best PSNR (dB ") and SSIM (") scores per dataset, noise level, and metric are
highlighted in bold, the second best are underlined (in the case of equal numbers, the decision is made on the basis of further decimal places).

Method Number of raw images for averaging

1 2 4 8 16

Cellar Raw 34.75/0.7730 37.61/0.8703 40.42/0.9322 43.21/0.9680 46.13/ 0.9872

DRNEcust.þ BM3D[45] 43.01/0.9803 44.47/0.9853 45.53/0.9886 46.49/0.9913 47.59/0.9932

w/o-Metaþ BM3D[45] 41.42/0.9671 43.83/0.9817 45.01/0.9861 46.26/0.9905 47.56/0.9930

Min-Metaþ BM3D[45] 43.30/0.9818 44.72/0.9864 45.67/0.9899 46.49/0.9912 47.32/0.9922

Full-Metaþ BM3D[45] 43.74/0.9839 45.00/0.9875 45.99/0.9901 46.68/0.9916 47.63/0.9934

DRNEcust.þNLM[46] 42.46/0.9793 43.91/0.9841 45.05/0.9874 46.09/0.9902 47.32/0.9925

w/o-MetaþNLM[46] 41.08/0.9701 43.33/0.9812 44.66/0.9322 45.94/0.9897 47.28/0.9924

Min-MetaþNLM[46] 42.77/0.9809 44.18/0.9852 45.18/0.9879 46.09/0.9902 46.92/0.9911

Full-MetaþNLM[46] 43.19/0.9828 44.47/0.9863 45.50/0.9889 46.26/0.9905 47.35/0.9927

FBI-Denoiser[15] 41.69/0.9830 42.07/0.9851 42.29/0.9865 42.41/0.9871 42.62/0.9880

Blind2Unblind[47] 43.02/0.9515 43.67/0.9574 44.10/0.9616 44.41/0.9643 44.77/0.9660

Parking Lot Raw 31.09/0.7890 32.34/0.8780 33.29/0.9330 34.07/0.9625 35.24/0.9786

DRNEcust.þ BM3D[45] 33.39/0.9546 33.78/0.9639 34.11/0.9713 34.51/0.9770 35.39/0.9820

w/o-Metaþ BM3D[45] 33.04/0.9394 33.70/0.9612 34.07/0.9705 34.50/0.9770 35.37/0.9817

Min-Metaþ BM3D[45] 33.47/0.9573 33.83/0.9651 34.11/0.9710 34.44/0.9749 35.20/0.9780

Full-Metaþ BM3D[45] 33.40/0.9553 33.81/0.9648 34.11/0.9715 34.51/0.9771 35.40/0.9823

DRNEcust.þNLM[46] 33.14/0.9464 33.56/0.9567 33.92/0.9655 34.36/0.9731 35.29/0.9799

w/o-MetaþNLM[46] 32.93/0.7890 33.52/0.9559 33.91/0.9657 34.37/0.9738 35.26/0.9794

Min-MetaþNLM[46] 33.11/0.9447 33.52/0.9547 33.84/0.9622 34.17/0.9670 34.88/0.9709

Full-MetaþNLM[46] 33.14/0.9468 33.56/0.9566 33.92/0.9657 34.37/0.9734 35.31/0.9804

FBI-Denoiser[15] 32.52/0.9450 32.67/0.9522 32.76/0.9573 32.87/0.9604 33.05/0.9630

Blind2Unblind[47] 33.61/0.9156 33.86/0.9282 34.05/0.9379 34.27/0.9441 34.74/0.9488
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potential advantages for downstream vision tasks. Although we
used the symptom-fighting denoising as a rationale for noise
source estimation, denoising was the most studied downstream
application for noise level estimation and therefore best suited to
assess the effects of estimating total noise more accurately.

We investigated the effect of more accurate total noise
level estimation on denoising on the example of two traditional
denoisers that input expected noise levels (BM3D[45] and
non-local means (NLM)[46]) and compare results to two state-
of-the-art learning-based denoisers (FBI-Denoiser[15] and
Blind2Unblind[47]). BM3D and NLM both assumed Gaussian
noise, the FBI denoiser internally used PGE-Net for Poisson–
Gaussian noise estimation, and Blind2Unblind did not explicitly
assume a noise distribution. We applied all denoisers with
default parameter values and pre-trained weights provided by
the respective authors (we selected respective weights for real-
noise images that led to the best results for our datasets, i.e.,
“DND” weights for FBI-Denoiser and “raw RGB” weights for
Blind2Unblind). For a fair comparison, all denoisers were
applied to whole images. Denoising results are compared using
peak signal-to-noise ratio (PSNR [dB]) and structural similarity
index measure (SSIM).[48]

Table 4 presents quantitative results using the ICX285 camera.
For the Cellar scene, Full-Metaþ BM3D led to the best scores in
all cases, followed by Min-Metaþ BM3D for cases of higher

noise (less images used for averaging), and
DRNEcust.þ BM3D for lower noise cases (more images for aver-
aging). We observed similar results in combination with the
NLM denoiser. This is in accordance with the results from
Table 2 that DRNEcust. and Full-Meta perform best and in accor-
dance with Table 3 that Min-Meta was not far off, but it counter-
acted the nonintuitive results from Table 3 that w/o-Meta
occasionally led to more accurate total noise estimations.
The denoising resulted rather underpin the intuition that the
more metadata available for the noise source estimators, the
better the total noise estimation. The learning-based
denoisers performed less accurate than BM3D, which differed
from the results reported in their respective original studies,
as these denoisers were neither trained on large and diverse
real-world datasets (with the weights we employed) nor fine-
tuned to our datasets. The performance gap between the
traditional and the learning-based denoisers increased with
decreasing noise level.

We note similar results for the Parking Lot dataset with the
difference that Blind2Unblind and Min-Meta both score best
in the two highest noise cases. However, the better performance
of Min-Meta compared to Full-Meta might be specific to BM3D,
as Full-Meta was relatively more accurate when combined with
NLM. Experiments on the EV76C661 camera yielded comparable
findings (Table 5).

Table 5. Denoising performance for real-world noised images (camera: EV76C661). Best PSNR (dB ") and SSIM (") scores per dataset, noise level, and
metric are highlighted in bold, the second best are underlined. Compare to Table 4.

Method Number of raw images for averaging

1 2 4 8 16

Cellar Raw 28.59/0.6052 30.73/0.7447 32.40/0.8517 33.80/0.9227 35.36/0.9651

DRNEcust.þ BM3D[45] 33.30/0.9136 33.84/0.9221 34.06/0.9280 34.30/0.9342 34.85/0.9399

w/o-Metaþ BM3D[45] 33.29/0.9132 33.83/0.9221 34.08/0.9298 34.27/0.9322 34.72/0.9337

Min-Metaþ BM3D[45] 33.28/0.9125 33.75/0.9192 34.05/0.9268 34.29/0.9339 34.83/0.9387

Full-Metaþ BM3D[45] 33.33/0.9151 33.83/0.9209 34.10/0.9317 34.37/0.9388 34.83/0.9386

DRNEcust.þNLM[46] 33.22/0.9132 33.73/0.9200 33.95/0.9248 34.19/0.9296 34.71/0.9341

w/o-MetaþNLM[46] 33.22/0.9133 33.74/0.9207 33.97/0.9263 34.17/0.9283 34.62/0.9299

Min-MetaþNLM[46] 33.22/0.9131 33.69/0.9177 33.93/0.9238 34.18/0.9294 34.70/0.9332

Full-MetaþNLM[46] 33.22/0.9133 33.73/0.9219 34.00/0.9285 34.24/0.9327 34.70/0.9333

FBI-Denoiser[15] 33.18/0.9127 33.65/0.9196 33.82/0.9231 33.99/0.9251 34.42/0.9264

Blind2Unblind[47] 33.14/0.8921 33.60/0.9008 33.79/0.9075 33.99/0.9122 34.34/0.9149

Parking lot Raw 31.06/0.6734 33.31/0.8050 35.40/0.8953 37.12/0.9499 37.78/0.9806

DRNEcust.þ BM3D[45] 35.94/0.9342 36.50/0.9416 37.10/0.9476 37.47/0.9537 37.33/0.9605

w/o-Metaþ BM3D[45] 35.42/0.9198 36.38/0.9407 37.16/0.9502 37.56/0.9566 37.46/0.9661

Min-Metaþ BM3D[45] 35.62/0.9262 36.11/0.9334 37.18/0.9519 37.57/0.9568 37.43/0.9649

Full-Metaþ BM3D[45] 35.85/0.9324 36.43/0.9415 37.19/0.9524 37.82/0.9643 37.70/0.9757

DRNEcust.þNLM[46] 35.67/0.9312 36.24/0.9377 36.87/0.9437 37.27/0.9498 37.78/0.9560

w/o-MetaþNLM[46] 35.52/0.9295 36.27/0.9404 36.96/0.9467 37.35/0.9522 37.30/0.9604

Min-MetaþNLM[46] 35.60/0.9314 36.13/0.9376 36.99/0.9483 37.36/0.9524 37.27/0.9594

Full-MetaþNLM[46] 35.67/0.9320 36.28/0.9403 37.00/0.9488 37.55/0.9581 37.52/0.9694

FBI-Denoiser[15] 35.58/0.9287 36.02/0.9345 36.51/0.9389 36.70/0.9420 36.59/0.9446

Blind2Unblind[47] 36.37/0.8109 36.86/0.8243 37.37/0.8358 37.65/0.8446 37.51/0.8511
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Figure 10 illustrates qualitative results on the example of both
scenes recorded with the ICX285 camera and a medium noise
level (four averaged images each). It could be seen that the
FullMetaþ BM3D combination was the best at visually removing
noise while preserving image detail, closely followed by
DRNEþ BM3D (e.g., FullMetaþBM3D restored the edges of
the shadows less pixelated in the first row of Figure 10). In con-
trast, FBI-Denoiser and Blind2Unblind visually removed noise
the best, but smooth the entire image (both methods, see espe-
cially bottom rows in Figure 10) and introduced square artifacts
(Blind2Unblind). NLM tended to generally retain noise at edges
(e.g., around the door handle in the first row and around the sil-
ver frame in the third row of Figure 10).

In summary, Full-Meta in combination with the traditional
BM3D denoiser led to the best denoising results in most cases.
This supported previous findings that Full-Meta generally esti-
mated total noise levels the best and thus that noise estimation
can benefit from camera metadata.

4.5. Metadata Sensitivity Analysis

In this section, we investigated the individual influence of cam-
era metadata on total noise level estimations. Building upon pre-
vious results, we focused only on Full-Meta and compared it to
the theoretical noise model.

We conducted a black box analysis by uniformly sampling dif-
ferent input parameter values from the respective parameter

ranges for both approaches and observing respective outputs
(i.e., the total noise estimations). One input parameter was sam-
pled at a time and other parameters were fixed to their respective
maximum value (to aim for sufficiently high noise levels). Note
that the only image feature the noise model depended on was the
image intensity, while Full-Meta might have learned to employ
more image features (e.g., image noise). As we focused on the
influence of camera metadata only, we only input uncorrupted
homogeneous images with uniform intensities.

In the case of Full-Meta, we further omitted the residual noise
estimation ξM=I to calculate the total noise level, as a mismatch
between image noise and camera metadata was expected. Finally,
we compared the estimated noise levels of both models to quan-
tify the impact of each metadata and whether Full-Meta had
learned the theoretical model (we considered deviations in
½1, 2�DN as minor but worth noting and those larger than
2DN as significant).

We first examined the effect of each parameter on the esti-
mated noise level according to the theoretical noise model
(top part of Table 6). For each row, the bigger the difference
between estimated noise levels in the “Min” and “Max” columns,
the more important the parameter. The table shows that the full
well capacity is most important because it determines the photon
shot noise in the noise model, followed by the camera gain that
amplifies noise. The pixel clock rate, thermal white noise, and
sense node reset factor, which all contributed to readout noise,
had a negligible effect on the estimated total noise level. Note that

Figure 10. Exemplary denoising results for real-world noised images (four averaged images, top rows: Cellar, bottom rows: Parking Lot). Brightness and
contrast are adapted for better visualization. FullMetaþ BM3D best removes the noise while preserving image details. In contrast, FBI-Denoiser and
Blind2Unblind remove noise best visually, but smooth the entire image (both) and introduce square artifacts (Blind2Unblind). NLM tends to retain noise
at edges.
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these three parameters were only insignificant for the considered
set of fixed parameters in our experiments (see Supporting
Information). To illustrate, for instance, the impact of the pixel
clock rate on the total noise level was closely tied to the correlated
double sampling dominant time constant.[19]

Comparing the noise level of the noise model with the estima-
tions from the Full-Meta model (bottom part in Table 6),
Full-Meta had generally learned the relations between input
parameters and the noise levels. Yet, there were specific cases
where deviations could be observed (indicated by colored values).
Let us consider the two severe model deviations first (red values).
The first differences were the estimated noise levels for mini-
mum and maximummean image intensities. This corresponded
to the reduced noise estimation accuracy that we observed for
under- and overexposed images (see Supporting Information).
The second deviation could be observed for full well capacities
≤24 k electrons. The corresponding noise levels were most

different from the others learned by Full-Meta (that range
between about ½0, 13�DN). The farther the noise values departed
from this range, the larger the observed model deviation. This
indicated that these noise levels were underrepresented in the
training data. Minor deviations from the noise model (orange
values) were limited to small respective parameter values, with
the exception of the sensor temperature. However, we did not
see a specific pattern in these deviations; they were mostly
slightly above 1 DN.

In conclusion, the Full-Meta model learned to capture
the theoretical camera metadata relations, with notable excep-
tions for low and high exposed images, and large noise levels
resulting from camera full well capacities ≤24 k electrons.
The full well capacity and the camera gain could be identified
as the most significant camera metadata, while pixel clock rate,
sense nose reset factor, and thermal white noise could be
neglected.

Table 6. Input–output sensitivity analysis of Full-Meta (bottom) compared to the noise model (top). Input: one parameter is sampled at a time while the
rest are fixed to respective maximum values (to generate high noise levels) and the (uncorrupted) mean image intensity to 128 DN (to avoid saturation).
Parameter value ranges are provided in Table 1 and concrete sampled values in the appendix. Output: estimated total noise level (table cells, in DN) per
input parameter configuration. ⋆∶ The influence of the pixel clock rate highly depends on metadata that we fixed during the experiments, such as the
correlated double sampling dominant time constant. ⋆⋆∶ Simulated CCD sensor (CMOS sensor otherwise).

Uniform samples of parameter value ranges

Min 1 2 3 4 5 6 7 8 Max

Noise Model Mean image Intensity 5.54 9.87 9.94 10.0 10.1 10.1 10.2 10.2 10.3 6.1

Minimal metadata

Camera gain 0.82 1.86 2.88 3.92 4.94 5.96 6.99 8.02 9.02 10.1

Exposure time 4.02 5.06 5.93 6.67 7.35 7.96 8.53 9.08 9.60 10.1

Sensor temperature 3.69 3.76 3.86 4.03 4.31 4.77 5.49 6.56 8.05 10.1

Full metadata

Dark signal FoM 3.96 5.02 5.89 6.65 7.34 7.95 8.53 9.06 9.57 10.1

Full well capacity 118.4 69.6 41.4 28.6 21.8 17.6 14.8 12.8 11.3 10.1

PixelClockRate⋆ 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33

Sense node (SN) gain 12.9 11.7 11.1 10.8 10.6 10.4 10.3 10.2 10.1 10.1

SN reset factor 9.56 9.56 9.58 9.59 9.67 9.71 9.76 9.85 9.95 10.1

Sensor pixel size 4.05 4.34 4.80 5.38 6.05 6.79 7.57 8.39 9.21 10.1

ThermalWh:Noise⋆⋆ 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.1 10.1

Noise Source
estimator (Full-Meta)

Mean image Intensity 7.05 9.57 9.87 9.98 10.1 10.1 10.1 9.95 9.56 8.52

Minimal metadata

Camera gain 0.90 1.70 2.56 3.53 4.15 5.11 6.61 7.84 8.86 10.1

Exposure time 5.31 6.07 6.70 7.24 7.77 8.26 8.67 9.03 9.39 10.1

Sensor temperature 4.34 4.49 4.71 4.98 5.34 5.85 6.36 7.23 8.48 10.1

Full metadata

Dark signal FoM 4.76 6.17 6.47 7.20 7.71 8.19 8.68 9.19 9.78 10.1

Full well capacity 167.2 62.7 34.4 27.7 21.4 16.3 14.7 13.03 11.5 10.1

PixelClockRate⋆ 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22

Sense node (SN) gain 13.5 12.8 12.1 11.4 10.8 10.6 10.5 10.4 10.2 10.1

SN reset factor 8.23 8.44 8.64 8.77 8.85 8.94 9.07 9.38 9.72 10.1

Sensor pixel size 4.88 5.22 5.56 6.01 6.51 7.05 7.72 8.39 9.08 10.1

ThermalWh:Noise⋆⋆ 9.46 9.54 9.71 9.87 10.0 10.1 10.1 10.1 10.1 10.1
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4.6. Computational Cost

The computation time was determined by averaging the noise
estimation inference times for 13.5 k Udacity image patches
(i.e., 100 Udacity images). We repeated the measurements five
times and took the average to eliminate the influence of
background processes and caching. We measured the following
average runtimes per image patch: 1.4ms (w/o-Meta), 1.3 ms
(Min-Meta), 1.3 ms (Full-Meta), 1.2 ms (DRNEcust.), 0.1 ms
(PGE-Net), 9.8ms (PCA), and 13.2ms (Bþ Fþ F). Note that
PGE-Net was faster because it processed a whole image at once,
but it did not estimate as many noise sources nor was as accurate
as the proposed method(s).

5. Conclusion

We have proposed a noise source estimator that quantifies con-
tributions of individual camera noise sources using an image
with metadata to tackle noise at its root causes as opposed to tack-
ling its symptoms. It is memory efficient and runs in real time,
and its broad range of learned camera systems makes it directly
applicable to many mobile agents. Comparing the three versions
of the estimator, we validated the natural hypothesis that the
more camera metadata is available and relevant, the better the
noise source identification (Full-Meta). Moreover, the developed
estimator (Full-Meta) promotes a reliable application by its ability
to detect unexpected influences in image noise and the metadata.
We have evaluated its functionality in extensive experiments
including real-world noise from two camera systems, a self-
simulated and three standard datasets, the application in two field
campaigns with unexpected image noise and metadata changes,
and in a sensitivity analysis of the input parameters. Lastly, the
improved total noise estimation has been demonstrated in the
context of the downstream vision application of image denoising.
In the future, our method could be integrated into a machine’s
feedback loop to perform automatic countermeasures.[35] As our
estimators already show notable experimental performance, we
follow the baseline[6] and leave ablations for the future.
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