Fan, Fan and Shi, Yilei and Zhu, Xiaoxiang (2024) Urban Land Cover Classification with Efficient Hybrid Quantum Machine Learning Model. In: 13th IEEE Congress on Evolutionary Computation, CEC 2024, pp. 1-7. IEEE CEC 2024, 2024-06-30 - 2024-07-05, Yokohama, Japan. doi: 10.1109/CEC60901.2024.10611843. ISBN 979-835030836-5.
![]() |
PDF
- Only accessible within DLR until September 2025
9MB |
Official URL: https://ieeexplore.ieee.org/document/10611843
Abstract
Urban land cover classification aims to derive crucial information from earth observation data and categorize it into specific land uses. To achieve accurate classification, sophisticated machine learning models trained with large earth observation data are employed, but the required computation power has become a bottleneck. Quantum computing might tackle this challenge in the future. However, representing images into quantum states for analysis with quantum computing is challenging due to the high demand for quantum resources. To tackle this challenge, we propose a hybrid quantum neural network that can effectively represent and classify remote sensing imagery with reduced quantum resources. Our model was evaluated on the Local Climate Zone (LCZ)-based land cover classification task using the TensorFlow Quantum platform, and the experimental results indicate its validity for accurate urban land cover classification.
Item URL in elib: | https://elib.dlr.de/204201/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Urban Land Cover Classification with Efficient Hybrid Quantum Machine Learning Model | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2024 | ||||||||||||||||
Journal or Publication Title: | 13th IEEE Congress on Evolutionary Computation, CEC 2024 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/CEC60901.2024.10611843 | ||||||||||||||||
Page Range: | pp. 1-7 | ||||||||||||||||
ISBN: | 979-835030836-5 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Quantum Machine Learning, Quantum Image Encoding, Quantum Circuit, Urban Land Cover Classification | ||||||||||||||||
Event Title: | IEEE CEC 2024 | ||||||||||||||||
Event Location: | Yokohama, Japan | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 30 June 2024 | ||||||||||||||||
Event End Date: | 5 July 2024 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Fan, Fan | ||||||||||||||||
Deposited On: | 16 May 2024 13:35 | ||||||||||||||||
Last Modified: | 25 Feb 2025 14:11 |
Repository Staff Only: item control page