Luis, Samuel Yanes und Shutin, Dmitriy und Gomez Marchal, Juan und Gutiérrez Reina, Daniel und Toral Marín, Sergio (2024) Deep Reinforcement Multiagent Learning Framework for Information Gathering with Local Gaussian Processes for Water Monitoring. Advanced Intelligent Systems. Wiley. doi: 10.1002/aisy.202300850. ISSN 2640-4567.
PDF
- Verlagsversion (veröffentlichte Fassung)
19MB |
Offizielle URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202300850
Kurzfassung
The conservation of hydrological resources involves continuously monitoring their contamination. A multiagent system composed of autonomous surface vehicles is proposed herein to efficiently monitor the water quality. To achieve a safe control of the fleet, the fleet policy should be able to act based on measurements and fleet state. It is proposed to use local Gaussian processes and deep reinforcement learning to jointly obtain effective monitoring policies. Local Gaussian processes, unlike classical global Gaussian processes, can accurately model the information in a dissimilar spatial correlation which captures more accurately the water quality information. A deep convolutional policy is proposed, that bases the decisions on the observation on the mean and variance of this model, by means of an information gain reward. Using a double deep Q-learning algorithm, agents are trained to minimize the estimation error in a safe manner thanks to a Consensus-based heuristic. Simulation results indicate an improvement of up to 24% in terms of the mean absolute error with the proposed models. Also, training results with 1–3 agents indicate that our proposed approach returns 20% and 24% smaller average estimation errors for, respectively, monitoring water quality variables and monitoring algae blooms, as compared to state-of-the-art approaches.
elib-URL des Eintrags: | https://elib.dlr.de/204175/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Deep Reinforcement Multiagent Learning Framework for Information Gathering with Local Gaussian Processes for Water Monitoring | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 26 April 2024 | ||||||||||||||||||||||||
Erschienen in: | Advanced Intelligent Systems | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.1002/aisy.202300850 | ||||||||||||||||||||||||
Verlag: | Wiley | ||||||||||||||||||||||||
ISSN: | 2640-4567 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Reinforcement learning, pollution monitoring, multiagent system | ||||||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | D IAS - Innovative autonome Systeme | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - STARE, R - Schwarmnavigation | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||||||||||||||
Hinterlegt von: | Shutin, Dmitriy | ||||||||||||||||||||||||
Hinterlegt am: | 08 Mai 2024 13:31 | ||||||||||||||||||||||||
Letzte Änderung: | 10 Mai 2024 10:27 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags