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1. Introduction

Environmental monitoring is vital for assessing various aspects
of the natural world, including air, water, soil quality, biodiver-
sity, and climate. This practice plays a crucial role in addressing

environmental issues such as pollution,
climate change, and biodiversity loss.[1]

By focusing on key indicators like air and
water quality, scientists and policymakers
can pinpoint pollution sources and imple-
ment effective measures to reduce or elim-
inate them, informing the development of
impactful environmental policies and regu-
lations. To efficiently monitor water resour-
ces, autonomous surface vehicles (ASVs)
emerge as a promising solution, particu-
larly for vast geographic areas challenging
to survey manually.[2] ASVs offer a cost-
effective means of data collection using
diverse sensors, including physicochemical
sensors and cameras.[3,4] Leveraging these
autonomous agents allows for the swift
acquisition of comprehensive environmen-
tal data, enhancing our understanding of
environmental conditions accurately and
efficiently.

This article focuses on a specific issue in
natural conservation, building upon prior

research.[5,6] It addresses the monitoring of Ypacaraí Lake,
Paraguay’s largest drinking water source, using ASVs. Ypacaraí’s
water quality, crucial for the population, is characterized by
variables like pH, turbidity, dissolved oxygen, and chlorophyll
concentration. Contamination sources vary due to geographical,
human, and biological factors, influencing the optimal informa-
tion acquisition process. Monitoring the contamination is
challenging due to their localized and temporal occurrence, influ-
enced by wind and tides within the lake. This article proposes the
adaptive deployment of a multiagent vehicle fleet capable of effi-
ciently monitoring common water quality phenomena such as
algae blooms.

The approach proposed in this article for monitorization of
biological phenomena will fall into the category of the so-called
informative path planning (IPP).[7] The ultimate goal of this
family of problems is to sequentially decide on an optimal path
for every vehicle that maximizes the information I collected,
while minimizing the cost C associated with data acquisition.
However, when agents have little or no information about the
environment, it is difficult to make effective decisions in the
presence of such high uncertainty. This problem has been pre-
viously addressed in works such as ref. [6], where by means of
Bayesian optimization (BO) and an acquisition function, the next
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The conservation of hydrological resources involves continuously monitoring their
contamination. A multiagent system composed of autonomous surface vehicles is
proposed herein to efficiently monitor the water quality. To achieve a safe control of
the fleet, the fleet policy should be able to act based on measurements and fleet
state. It is proposed to use local Gaussian processes and deep reinforcement
learning to jointly obtain effective monitoring policies. Local Gaussian processes,
unlike classical global Gaussian processes, can accurately model the information in
a dissimilar spatial correlation which captures more accurately the water quality
information. A deep convolutional policy is proposed, that bases the decisions on
the observation on the mean and variance of this model, by means of an infor-
mation gain reward. Using a double deep Q-learning algorithm, agents are trained
to minimize the estimation error in a safe manner thanks to a Consensus-based
heuristic. Simulation results indicate an improvement of up to 24% in terms of the
mean absolute error with the proposed models. Also, training results with 1–3
agents indicate that our proposed approach returns 20% and 24% smaller average
estimation errors for, respectively, monitoring water quality variables and moni-
toring algae blooms, as compared to state-of-the-art approaches.
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position for data acquisition is chosen considering the overall
uncertainty and the current information model.

IPP strategies are intrinsically adaptive as, depending on the
successive observations of the scenario, the agents must change
their monitoring waypoints. When different cooperating agents
are considered for monitoring, other characteristics come into
play that increase the complexity of the IPP. This is the case
of redundancy in measurement or collision avoidance between
agents. In the first case, it is obvious that when paths are con-
strained to a distance and a time budget, taking redundant meas-
urements is against efficiency. Agents must coordinate by means
of some methods to avoid oversampling areas of which they
already have sufficient knowledge or to simultaneously monitor
the same area. To address these multiple aspects of IPP, this arti-
cle proposes to embed this IPP into a reinforcement learning
framework,[8] that explicitly considers the information gain with
the redundancy measure of every vehicle. The other important
aspect in multiagent IPP is agent–agent and agent–environment
collision avoidance. which is an aspect usually neglected in pre-
vious works.[5]

Second, the Gaussian Processes (GPs) provide a probabilistic
description of the process in terms of its mean μ and covariance
σ, which naturally provide a measure of uncertainty about the
learnt process.

However, GPs have certain issues that make them difficult to
work with. First, they have a complexity of OðN3Þ, with N being
the number of measurement samples.[9] Moreover, the use of
GPs in environmental monitoring typically assumes constant
hyperparameters across the entire data range. In the case of most
kernels used in the literature,[6] the length scale hyperparameter
defines the size of spatial correlation between samples of the
process. Having the same length scale implies constant spatial
correlation properties across the whole area of interest.
However, practically, this is often not the case, as, for example,
concentrations of the algae can change quite abruptly.

Therefore, another major contribution of this work is the use
of multiple local GPs. Local GPs have only local influence, so they
will fit the data seen under their area of influence. It will be
shown that local GPs are able to characterize better areas with
distinct length scales. Furthermore, local GPs bring a consider-
able improvement in the scalability of the algorithm, since
the complexity is reduced in global terms from OðN3Þ to
OðN3=M2Þ, with M being the number of local GPs.

Finally, to solve the IPP, the use of deep reinforcement learn-
ing (DRL) techniques is done to train deep adaptive policies. In
recent years, DRL has begun to be used for multiagent[10] path
planning. DRL allows a neural network to optimize a multiagent
policy to maximize a long-term objective set in a reward function.
The reward function acts as a measurement of the optimality of
each action a given an observation of the environment o.
Through the interaction of agents and the environment, DRL
algorithms such as deep Q-learning (DQL)[11] are able to adapt
the fleet behavior of vehicles to improve acquisition in an opti-
mization time horizon. For this application, the use of DRL is
also convenient because it will allow behavior specialization of
a fleet for a broad set of scalar fields by means of realistic sim-
ulators of the environments within the known boundaries of
each biological process.

Finally, the framework is validated against other path planning
algorithms in the different benchmarks.

In summary, the novelties proposed in this article are as fol-
lows. 1) A Local GP model for multimodal environmental scenar-
ios. 2) A DRL framework to maximize the gathered information
for a fleet of unmanned vehicles, including the reward function
based on the information gain and the observation method.
3) A censoring methodology to avoid agent–agent and agent–
environment collisions.

This article is organized as follows. In Section 2, previous
approaches and advances in information gathering and path
planning with autonomous vehicles are discussed. In Section 3,
the problem of IPP is described and the ground truth under
monitorization as well. Later, in Section 4, the methodology is
explained. First, the local GP proposition is explained, and later,
the DRL algorithm and formulation is described. In Section 5,
the different results and simulation are described, and also the
comparison with other path planning techniques. Finally, in
Section 6, the conclusions are presented with future lines of
works that shall be addressed.

2. Related Work

The use of autonomous aquatic and aerial vehicles has gained
relevance in recent years due to advances in battery autonomy
and, above all, to the capability for remote computing and
sensing.[12] In the particular case of aquatic autonomous vehicles,
they are divided into two types: 1) surface vehicles (ASV) and
ii) underwater vehicles (USV). The former has been used espe-
cially for monitoring water quality parameters (WQP) in rivers,
lakes, and coasts. The use of ASVs for the acquisition of infor-
mation in natural environments has been gaining momentum
lately. In several previous works, it is possible to find examples
of multiagent[6] applications for this purpose. In general, these
vehicles are equipped with sensor modules for the acquisition
of WQPs and can take geographically located samples at one
point at a time. These vehicles are particularly convenient
because they can be used to obtain a status of the quality of water
resources with good GNSS localization capability, maneuverabil-
ity, and autonomy.[2] USVs have been used for the exploration of
underwater biological environments and for remote inspection
of shipwrecks.[13] Both types of vehicles are usually equipped
with water quality sensors, bathymetry, spectral cameras, etc.,
for environmental data acquisition. These sensors are going to
define the observation capability in monitoring tasks and observ-
ability within the patrol optimization problem.

It is common to find in previous works that GPs have been
used to model several different types of data into a comprehen-
sible model, from static environmental data as in ref. [14] to
dynamic temporal series as in ref. [15]. In the particular task
of IPP with ASVs, the work in ref. [14] uses BO to sequentially
decide the next sample to be taken with a single vehicle. A GP
and the expected improvement acquisition function are used as
the decision module. This function must be tuned to reduce the
sample acquisition distance and to avoid the high cost of the
ASV’s movement. In ref. [15], the dynamic case is solved using
a similar approach. The IPP considered there uses the predictive
uncertainty as points of interest given an expanded definition of
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the radial basis function (RBF) kernel used in ref. [14] to
accommodate a temporal axis. An extension of the methodology
proposed in ref. [6] is addressed for the multiagent case. The
acquisition space is proposed to be divided by means of a
Voronoi tessellation, which, according to the authors, avoids
redundant sampling. The methodology is used only to monitor
functions with highly spatial-correlated samples, which neglect
the existence of dissimilar length scales for the data.
Therefore, when addressing environments with zones of high
correlations and zones with high correlations between samples
or heteroskedastic noise, these approaches cannot efficiently
solve the informative task.

Another common approach is the use of algorithms based on
particle swarm optimization (PSO).[16] PSO algorithms base
agent decisions on swarm behavior. In ref. [16], the use of
GPs to improve the classical PSO algorithm is also discussed.
In this approach, vehicles update their speeds attracted by the
points of highest uncertainty of the GP, the highest individual’s,
collective, and estimated pollution values. This approach results
in explorative–exploitative paths and a very computationally scal-
able algorithm. This approach is not always adequate due to local
gradient continuity fluctuations, especially for the case of algae
bloom monitoring where the information gradient is
discontinuous.

In relation to the use of DRL for path planning, it is easy to
find an upward trend in the number of recent articles such as in
ref. [10]. Previous approaches such as those in ref. [17] have
focused on solving the informative patrol problem for
Ypacaraí Lake itself. This problem consists of continuous moni-
toring of WQP with a temporal cyclic criterion. In ref. [10], a mul-
tiagent version of the double deep Q-learning (DDQL) algorithm
of ref. [11] is used. The DDQN algorithm uses two equal neural
networks to estimate the cumulative future reward given a state
observation o and the set of possible actions a. From this work, it
is possible to see that the neural decoder structure with visual
observations is used, similar to our proposal. This visual formu-
lation of the state allows for better interpretability and simplifies
the feature selection process for the estimation of the estimated
future reward. However, unlike our new proposal, the state is
completely known a priori, which is unrealistic in an initial explo-
ration scenario such as the one that in this article’s proposal.

In ref. [18], a work based on DRL is also presented to solve IPP
with multiple agents. The objective is to reduce the estimation
error over a relatively small scalar field (10� 10 pixels) in the
minimum possible time. Similar aspects between this approach
and ours are: 1) the use of partial and visual observations of the
environment and 2) the use of discrete actions as a way of reduc-
ing the decision variables of each agent. While they propose a
Dueling DQL, this work proposes the proximal policy optimiza-
tion algorithm which uses rollouts of experiences of the neural
policy πðsÞ to update its parameters. A reward function based on
the root mean squared error (RMSE) is proposed, which implies
that the reward can only be calculated in simulation, when the
ground truth is known. Our proposal attempts to decouple the
reward from an error function, which is associated with an
unknown ground truth, and the error function itself. In this arti-
cle, several reward laws are proposed based on information gain
such as mean transport or uncertainty variance. Moreover, the
reward function in ref. [18] does not take into account the

measurement redundancy between agents. A similar work was
conducted in ref. [19], where the authors implemented a DRL-
based IPP algorithm to search for gas leaks. Several reward func-
tions are used in a low-resolution squared map. The conclusions
of this last work allows for a better comprehension of the depen-
dency of the uncertainty and the error with the optimal policy.
This approach also addressed a case of gradient sparsity bench-
marks, similar to the algae bloom case here treated. A similar
problem is analyzed in ref. [20], where the Infotaxis path planning
is addressed. In this approach, the null-gradient case is treated
using planning heuristics based on bioinspired algorithms.

Other approaches using DRL for path planning have focused
solely on obstacle avoidance. In ref. [21], one can find a promis-
ing example of the use of DRL techniques such as advantage
actors critic for the generation of obstacle-free paths with a single
flying drone. In this article, obstacles can be both dynamic and
static. The policy learns to avoid obstacles by internalizing the
obstacles. Another example of obstacle avoidance mechanism
is found in ref. [22], where DDQL is used to solve the IPP with
a single agent.

3. Statement of the Problem

IPP is defined as a sequential decision process in which the
objective is to maximize the information IðtÞ collected over time.
For the multiagent case, a set of paths Ψ∶ ¼ ½ψ1,ψ2, : : : ,ψN �that
maximize the joint information will be sought with the restric-
tion that these paths have no agent–agent or agent–obstacle col-
lisions.

Ψ� ¼ argmax
Ψ

X
ψ∈Ψ

IðtÞψ (1)

In our approach, a path will be defined by a series of measure-
ment points Xmeas

j for each agent j in a fleet of N agents. Each
vehicle will take at each instant t an action a from the possible set
of actions A. These actions correspond to the eight vectors of
movement ½S, SE,E,NE,N,NW ,W , SW�. Each action involves
moving the agent in that direction over a fixed distance dmeas

and taking a water sample wherever the vehicle is. The paths will
have a maximum length of dmax until the battery level reaches a
safety threshold that prevents them from returning to the base.
Samples are taken from a ground truth that is a static scalar field
Y predefined at the start of the mission but unknown except at
those points where the agents sample. The measurement model
for vehicles is represented as

yp ¼ YðpÞ þ εp (2)

where p ¼ ½plat, plong� is a vehicle position, εp is a noise associated
with the variability of sensor measurement, and Y∶R2 ! R is the
sought-after (ground truth) function. It will be assumed that no
vehicle can take samples or visit areas with obstacles. The navi-
gation limits of the ASVs are indicated by a navigation map
M∶R2 ! R, where MðpÞ ¼ 0 in the areas that are unreachable.
Additionally, no vehicle may be in the same zone at the same
time. Two vehicles are considered to be in the same zone when
the distance between them is less than dsafety. This is a strong
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constraint to ensure the safety and integrity of the fleet, in addi-
tion to reducing redundancy in the measurement. In relation to
the initial point, each ASV j has a valid deployment zone on each
map Z j. No vehicle can start outside its zone due to coastal secu-
rity restrictions. It will be assumed that the values of Y are nor-
malized between 0 and 1, called the normalized contamination
index (NCI), for better comparison between applications. In this
case, a value of 0 is considered a value outside of any biological
risk and 1 a value with high biological risk or high water
contamination.

Given this set of hypotheses and statements, it is possible to
formulate the problem as a partially observable Markov decision
process (POMDP). This type of decision process can be expanded
to the multiagent case by defining multiple agents and a partially
observable state st, only accessible through an observation func-
tion otj ¼ OðstÞ by the agent j. The optimization goal of any

POMDP is to find the optimal policy atþ1
j ¼ π�ðotjÞ that maps

an observation otj into an action that maximizes the accumulated

reward given by
PT

t¼0 Rðst, atjÞ and over some optimization time
budget T for each agent j ∈ ½1,N� in the fleet. From the complete
state st that gathers all the information for the environment, the
complete ground truth scalar field is ignored, and it is only pos-
sible to know at each instant t the positions of the ASVs, the navi-
gation map ℳ, and the samples that have been taken so far by
each vehicle fYðXmeasÞ,Xmeasg.

3.1. Ground Truth Models

This article focuses on two cases of contamination for natural
water resources. First, it is the case of monitoring smoothly dis-
tributed physicochemical parameters (WQP) such as pH, dis-
solved oxygen, oxidation–reduction potential (ORP), etc. As
described in ref. [6], these parameters can be characterized as
mountains and valleys of different heights randomly distributed
on the navigable surface (see Figure 1a). For the second bench-
mark,the algae blooms case, the distribution of cyanobacterial
clusters is more localized, exhibiting higher variation of

gradients at some locations. To obtain this ground truth, we pres-
ent an Algae Bloom simulator based on a simplified diffusion
model of blue–green algae bacteria (see Figure 1b). Up to 3 ran-
dom algae blooms can appear in anywhere in the waters. We treat
these bacteria from the algae bloom as particles with random
speeds vr for each one, to model the diffusion effect of contam-
inants in the surface of the waters. Additionally, we introduce two
speeds related to wind speed vw and water currents vc . These
three components are weighted to compose a final speed. The
position of every particle is updated depending on these speeds
by computing the discrete integral with a fixed time step Δt.
Finally, to model the effects of the shores, the physical bound-
aries of the navigable zones exert a pushing-back force to the par-
ticles. The algae bloom simulations will be termed static when
the blooms are simulated for a random period and then consid-
ered stationary. Chlorophyll or turbidity sensors are often used to
measure them. These blooms also respond to the dynamics of
the tide and wind, acting like surface particles. The framework
starts by simulating the dynamics of the algae blooms for a ran-
dom amount of time prior to any mission to start with any pos-
sible state during the algae dissemination process. In the end, it
is proposed to model both phenomena in two ground truth gen-
erators that provide the learning algorithm with randomly gen-
erated scalar functions f ðXÞ.

In both cases, the functions are considered static since the
dynamics of the parameters to be measured is much slower than
the total time to complete a mission (about 4h).

3.2. Assumptions

The following assumptions are used throughout this article.
1) The navigable waters map will be the same from one episode
to another and is obtained by the real navigation map of the water
resource under monitorization. 2) This article assumes that
vehicles must be homogeneous, with equal movement and mea-
surement capabilities. 3) The vehicles can take the actions and
reach the target points without any problem. No moving
obstacles are considered within the scenario other than the exis-
tence of the other vehicles. 4) Vehicles do not have to end up in
the same place as they started. They are considered to have suffi-
cient autonomy to return to shore from any point at the end of
the monitoring. 5) It is necessary to have a prior approximate
behavioral model of the information. 6) Measurement noise
from vehicles is considered to be negligible.

4. Methodology

In this section, the methodology used to 1) perform the model
estimation online with local GPs and 2) train the ASVs policy
using DRL is described.

4.1. Local Gaussian Process for Estimation

AGP is a stochastic process that is fully specified by a mean func-
tion μðxÞ and a covariance function kðx, x0Þ. GPs are used in this
work, similarly to ref. [6], as online prediction methods to obtain
a contamination model. This model will serve, on the one hand,
as an estimation of WQP/algae concentration and, on the other

(a) (b)

Figure 1. Example of the ground truths used for every mission. a) The
WQP map. b) An example of an algae scenario with two blooms. In green,
Z1,Z2,Z3 correspond to the initial deployment zones of the vehicles. The
initial position of every vehicle is randomly selected within this area.
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hand, as an observer of the hidden state of the POMDP. A GP is
denoted by

f ðxÞ � GPðμðxÞ, kðx, x0ÞÞ (3)

A GP is a nonparametric probabilistic approach that can be
used to estimate an unknown function f ðXÞ, given a set of
input–output pairs ðX, yÞ.[9] In the case of WQP, X represents
the sampling locations, and y represents the measured WQPs
at these locations. GP assumes that the joint distribution of
the output values y is Gaussian, with a mean function μðxÞ
and a covariance function kðx, x0Þ that specify the similarity
between any x and x0 in the input space. The GP prediction
for a set of measured points fXmeas, xg is given by

f̂ ðXÞ ¼ kT� ðK þ σ2nIÞ�1y

where k� ¼ ½kðx�, xmeas
1 Þ, : : : , kðx�, xmeas

n Þ�T
K ¼ ½kðxmeas

i , xmeas
j Þ�n

i,j¼1

(4)

In this equation, k� represents the vector of kernel evaluations
between the new input point x� and all training input points
xmeas
i , i ¼ 1, : : : , n. K is the covariance matrix between all training
input points, and σ2n is the noise variance of the observations. The
GP prediction can be conditioned on observed data by incorpo-
rating the training data in the mean and covariance functions.
Specifically, given the set of training data ðXmeas, yÞ, where
X ¼ ½xmeas

1 , : : : , xmeas
n �T and y ¼ ½y1, : : : , yn�T , the posterior distri-

bution of the uncertainty values at a new input point x� can be
written as

σ2ðx�Þ ¼ kðx�, x�Þ � kT� ðK þ σ2nIÞ�1k� (5)

In this equation, σ2ðx�Þ represents the variance of the poste-
rior distribution of the function value at a possible new measure-
ment point.

The choice of the kernel function defines how the input
variables are correlated. An immediate choice for the task of
WQP monitoring, as explained in ref. [6], is to use an RBF-type
kernel, which reduces the correlation exponentially with the dis-
tance between samples. This kernel, then, imposes a smooth
structure modeled by its lengthscale, which in most cases is suf-
ficient to conform a good model.

kRBFðx, x0Þ ¼ σ20 exp
�kx� x0k2

2l

� �
(6)

In GPs, the hyperparameters θ ¼ ðσ20, lÞ are learnt from the
training data by maximizing the type-II log-likelihood function,
which is the likelihood of the hyperparameters given the
observed data fXmeas, yg.[9]

However, in the classical approach where the whole search
space X is estimated with the same GP, it is implicitly assumed
that the same hyperparameters, for example, l defining the
smoothness of the estimated function f̂ ðxÞ, are valid for all
regions of the explored environment. This, as will be seen later,
may be incorrect for functions with local behaviors.

To deal with benchmark function with different levels of con-
tinuity and gradient smoothness, such as those in Figure 1, the
use of local GPs is proposed. Local GPs consist of a set of GPs

that are only valid on a subset of the total search space Xlocal. First,
to this end, it is possible to define a set of centroids ck homo-
geneously distributed over the map. Each centroid defines a
GP and has a radius of action of νk. Thus, a model with K local
GPs is defined as

GPlocal ≔ fGP1, : : : ,GPKg
where : GPk ¼ GPðμ, k, ck, νkÞ

(7)

To improve consensus between local GPs when fitting the
hyperparameters online, several shared zones of influence surge,
where a sample ðx, yÞ is used to fit several processes simulta-
neously (see Figure 2a). Shared areas guarantee better smooth-
ness in the limits of the local areas. The level of redundancy and
the granularity of the processes is defined with ðνk, ckÞ parame-
ters and will be adjusted for each case.

To compute a total joint mean μ̂ðxÞ and uncertainty σ̂ðxÞ for a
point x, a weighted mean among all values assigned by the GPs
will be used. The influence of each GP on a value x, will be pro-
portional to the distance from that location to the centroid of that
GP. This is convenient since the whole model can easily reach a
consensus between GPs because they often see the same data in
shared zones, while being robust against outliers or a possible
nonconvergence of a local GP where a new sample does not
improve a particular GP. This joint model, as depicted in
Figure 2a,b, is transparent to the sampling process and produces
an output with the same size of a global GP. Thus, the joint mean
and uncertainty ðμ̂ðxÞ, σ̂ðxÞÞ can be defined as

μ̂ðxÞ ¼
XK
i¼1

μiðxÞe�kx�cik2
XK
i¼1

e�kx�cik2

 !�1

(8)

σ̂ðxÞ ¼
XK
i¼1

σiðxÞe�kx�cik2
XK
i¼1

e�kx�cik2

 !�1

(9)

Any Gaussian model also allows the imposition of a prior on
the information obtained. In both ground truths, a prior of mean
0 is imposed, assuming that the measurements are normalized.
This makes it possible to establish that, in the absence of meas-
urements and when uncertainty is at a maximum, leading to zero
correlation, the estimated value at those points coincides with the
prior. The proposed local GPs follow the same rule. This implies
some knowledge of the scalar field to be measured. Any other
type of ground truth should consider how the information
behaves a priori. The same applies to hyperparameters. A range
of possible hyperparameter values has to be considered with
which to start the optimization of each GP. In our case, the initial
value of all processes is chosen to be the maximum possible
l0 ¼ 10, indicating that, a priori, the information is smooth.
The interval of values imposed is ðlmin, lmaxÞ ¼ ð0.1, 10Þ, so that
in the optimization, l, will be kept bounded. These parameters
has been selected according to previous works[14] that addressed
the suitable values for WQP-related functions. The selection of
the radius νi of the local GPs will be selected accordingly. As the l
is a measurement of the spatial correlation between two samples,
the diameter of the area must be as large as the maximum
expected lmax. This value can be selected by simple observation
of the benchmark functions under study. In practice, a set of of
two samples inside of an influence area that shows a high
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likelihood for a high length scale will collapse to the maximum
and these measurements will be equivalent to uncorrelated or
very far away samples, with a distance higher than lmax. The selec-
tion of the νi, in the case of the algae bloom scenario, for exam-
ple, is imposed by the maximum expected size of the blooms. In
any case, the larger the areas of the local GPs given a predefined
position of the centroids, the more redundant the model. With
regard to the position of the centroids ci, a homogeneous grid
with an equidistant distribution of the centroids (see Figure 3)
has been imposed. The distance is such that every zone shares
a radius of νi with every four-connected neighbor zones to allow
consensus in the hyperparameter selection.

4.2. Deep Reinforcement Learning

DRL is a subfield of machine learning that combines deep neural
networks with reinforcement learning to enable agents to learn to
make optimal decisions in complex environments.[11] In DRL, an
agent interacts with an environment and receives rewards or pen-
alties for its actions. The goal of the agent is to learn a policy that
maximizes the expected cumulative reward over time.[8] In this
article, the algorithm DDQL is proposed as a common and suc-
cessful framework to optimize discrete action policies.[10,17,22]

DDQL uses a deep neural network to approximate the
action-value function Qðs, aÞ.[11] The action-value function is a
function that maps a state-action pair to the expected cumulative
reward. The Q-learning algorithm uses an iterative process to
update the Q-values based on the observed rewards and the
discounted future rewards. The updates are given by the
Bellman equation.[23]

Qðst, atÞ←Qðst, atÞ þ α rtþ1 þ γmax
a0

Q targetðstþ1, a0Þ �Qðst, atÞ
� �

(10)

where st is the state at time t, at is the action taken at time t, rtþ1 is
the reward received at time tþ 1, α is the learning rate, and γ is
the discount factor that controls the importance of future
rewards. The max operation selects the action with the highest
Q-value in the next state. DQL uses a deep neural network
Qðst, a; θÞwith parameters θ to approximate the action-value func-
tion. The network takes a state s as input and outputs Q-values for
each action. The loss function for the network is defined as

LðθÞ ¼E½ðrtþ1 þ γmax
a0

Q targetðstþ1, a0; θ�Þ � Qðst, at, θÞÞ2� (11)

where Q target is a target network with frozen parameters θ�

that are used to generate the targets for the Q-values.[11]

The Q-learning algorithm updates the parameters of the network
by minimizing the loss function using stochastic gradient
descent.

(a) (b) (c)

Figure 2. Local GP applied to algae bloom detection with random paths for three ASVs. a) The local GpS influence areas and the ground truth. b) The
synthesized model from the local GP μ̂ðxÞ. In c), the joint predictive uncertainty σ̂ðxÞ.

Figure 3. Example of the local GP zones with a radius ci distributed in
the Ypacaraí lake scenario. The different values of every zone represent
the posterior value of the RBF kernel lRBF when an homogeneous sam-
pling is applied.
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θ←θ� α
∂LðθÞ
∂θ

(12)

As the agent interacts with the scenario, it will generate
ðst, at, rt, stþ1Þ experiences that will be stored in a buffer memory
that is fed to the optimization algorithms, adjusting the Q value
to the new batch at each optimization step. For learning to be
effective, an initial exploration phase of the state-action space
is required. An ε-greedy policy is used, in which each agent will
take with a probability of ε a random action and with a probability
1� ε the optimal action indicated by the function Q, that is,
a ¼ maxa0Qðs, a0; θÞ. To balance the exploration-exploitation of
the network, ε is annealed from 1 (full random) to a minimum
value of exploration εmin (greedy).

4.3. Observation Function

To define the observation otj ¼ OðstÞ of an agent j, this work
resorts to a visual description of the scenario. Each map of
the scenario is discretized into an ½m, n�-pixel matrix. Such dis-
cretization helps to reduce the complexity of the problem and, as
mentioned in ref. [17], it is convenient due to the spatial corre-
lations between vehicle positions and areas of interest. Moreover,
these visual states can be directly forwarded by convolutional
neural policies as it will be explained later. Thus, the observation
will be composed of five channel images. 1) Themean of the local
GP μ̂ðXÞ. 2) The predictive uncertainty of the local GP σðXÞ.
3) The navigation mapℳ where values 1 indicate navigable posi-
tions. 4) A null matrix with the position of vehicle j with value 1.
5) A null matrix with the positions of the other vehicles j� with
value 1.

All these images will be min–max normalized to be between
0 and 1.

4.4. Reward Function

The definition of the reward function directly impacts the behav-
ior of the fleet. Therefore, its definition is fundamental for
acquiring the desired results.[8] The reward function, rðs, aÞ,
quantitatively determines how good or bad an action a is in a
state s and must be aligned with the ultimate goal, which is to
obtain a model as accurate as possible. To encourage agents
to explore the environment, it is necessary to define a metric that
evaluates the information gain from one instant to the next. In
previous work, as in ref. [6], the utility function is based on the
expected improvement of the function. This article proposes to
use two different reward functions and compare performance
and alignment with the final goal.

First, a reward function similar to the one used in ref. [24] for
monitoring forest fire scenarios will be tested. In this work, the
reward is directly proportional to discovered ignited cells in a dis-
cretized wildfire scenario. Thus, this reward function takes into
account the difference between the model at two consecutive
timesteps. This article will modify this function to reward the
absolute value of the changes from a previous to a later mean
of the model ΔμtðXÞ ¼P jμ̂tðXÞ � μ̂t�1ðXÞj. This reward pro-
vides higher values when the changes between the posterior
and the prior increase. This is motivated by the fact that

obtaining data that changes its mean with respect to the prior
means a better estimation, thus quantifying the quality of an
action. The changes in the model are directly related to the
Kullback–Leibler (KL) divergence as shown in Equation (13)
for a multivariate Gaussian distribution.

A higher KL divergence will is directly related to the degree of
change of the GP model experience when adapting new data.
Note that in Equation (13) both the changes in uncertainties
and means of two distributions impact the divergence.
Consequently, a increased divergence would imply that from
two consecutive steps, more valuable information is being uti-
lized by the model.

KLðGP1 ! GP2Þ ¼
1
2

�
log

jΣ2j
jΣ1j

� d þ trfΣ�1
2 Σ1g

þ ðΔμÞTΣ�1
2 ðΔμÞ

� (13)

In addition to this criterion, it is also proposed to use a reward
function that benefits those actions that reduce the predictive
uncertainty of the GP as much as possible. With the formulation
proposed in Section 4.1, the predictive uncertainty will be
adjusted through the kernel parameters online by means of like-
lihood maximization. Where the lengthscale is smaller, reducing
the uncertainty requires a larger number of samples and
vice versa. Thus, the reward will be proportional to the absolute
change in the uncertainty ΔσtðXÞ ¼P jσ̂tðXÞ � σ̂t�1ðXÞj. Note
that the absolute value is taken because, as the hyperparameters
are optimized, the covariance term changes, and the uncertainty
could increase or decrease when new data are taken. Therefore, a
change in the total uncertainty, regardless of the sign, also has an
impact on the model improvement, since this shift in the new
hyperparameters also contributes to the model accuracy.

In the multiagent case, it will be necessary to distribute the
rewards according to the impact of each action on the total
improvement of the model and to avoid that an agent who per-
forms a bad action gets a biased reward for an action of another
agent. Here, there are two important components.

First, it is a locality factor in the change, and it is only consid-
ered as part of the reward model those changes in an area of influ-
ence I of radius R around each agent. This radius is the same as
the level of influence of local GPs. Second, a redundancy factor
ρðxÞ is introduced for each zone within the radius area of influence
of the ASVs equal to the radius of the local GPs νk. The value ρðxÞ
is the number of agents who share the changes at that particular
location x. This redundancy factor will divide the aforementioned
changes in the uncertainty or model, meaning that two ASVs that
take the sample too close will receive half of the reward each. In
Figure 4, the reward parameters are visually depicted.

In summary, the two reward functions for every agent j are

rμðst, atjÞ ¼
X
x∈Ij

jΔμtðxÞj
ρjðxÞ

" #
(14)

rσðst, atjÞ ¼
X
x∈Ij

jΔσtðxÞj
ρjðxÞ

" #
(15)
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4.5. Deep Safe Policy for Multiagent Training

For this multiagent application, a single neural network for all
agents will be used. This technique, called parameter sharing,
has been shown to be effective in previous work.[10,24] The dif-
ference of this proposal from previous work is that the same neu-
ral network is able to accommodate a different number of
vehicles due to the egocentric formulation of the observation.
As agents are interchangeable in perception and actions, all gen-
erated experiences are stored indistinctly in the experience buffer
for later use in training.

The proposed neural network is presented in Figure 5. This
neural network is composed of a first stage in the form of a con-
volutional encoder, as originally proposed in ref. [11]. This stage
extracts the visual features of each observation otj to produce an
output Qðotj , aÞ. The three consecutive convolutional layers are

followed by three fully connected neural network layers.
Following these, the values are unfolded into two heads for
the computation of the value function VðsÞ and the advantage
function Aðs, aÞ. This way of representing Qðs, aÞ is based on
ref. [25], which allows for a better representation of the cumula-
tive reward. Finally, according to ref. [25], the value of Qðs, aÞ is
calculated as follows.

Qðs, aÞ ¼ VðsÞ þ Aðs, aÞ � 1
jAðs,aÞj

X
a

Aðs, aÞ
 !

(16)

While DRL effectively learns obstacle avoidance,[17] determin-
istic computation can address actions leading to agent–scenario
collisions.[22] However, collision between agents is more complex
as simultaneous actions may cause conflicts. This work proposes
a heuristic based on conditional decision-making to prevent such
situations. Agents are sorted based on the highest joint value of
Q, with the highest-Q agent taking an action without considering
other agents. Subsequent agents consider the new position of the
previous one, censoring Q values leading to collisions with �∞.
Once actions are decided, movements are processed to prevent
collisions (see Figure 6). This heuristic relies on agent optimism
to prioritize actions. In cases of random actions (following
ε-greedy policy), only safe actions are considered, avoiding

Figure 5. Dueling neural network architecture for the Q-function representation. It is composed of an initial visual encoder and two heads: i) the advan-
tage head and the value head. The outputs are the 8 Q-values.

Figure 4. Influence areas I for every vehicle and its corresponding redun-
dancy values ρ.

Figure 6. Consensus scheme for the safe action selection. At instant t, the
agent with higher Q chooses its action first. Then, the second agent takes
an action rejecting any that causes collision. This is repeated until all
agents have decided the next action, and a consensus is reached.
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collisions. Pseudocode for the safe dueling DQL algorithm is pro-
vided in Algorithm 1, with the consensus subroutine outlined in
Algorithm 2.

5. Simulations and Results

In this section, all the experiments and simulations performed to
validate the optimality of the algorithm are presented. First, the
performance in terms of computation time and accuracy of local
GPs along with the classical approach of global GPs is analyzed
for both WQP algae bloom benchmarks. Then, the results of the
DRL training are presented with both designed rewards and both
benchmarks, with a discussion on the scalability of the proposal.
Finally, the results are compared with other algorithms used in
previous approaches in the literature.

All simulations and training were conducted on an Ubuntu
22.04 server, with 256Gb RAM, Dual Xeon CPU Scalable SP3
HPC, and two different graphic processing units: 1) Nvidia
RTX 3090 25GB and 2) Nvidia Quadro A4000 48GB. Python
3.10 and PyTorch were used for policy optimization. All simula-
tion parameters and constraints are summarized in Table 1. The
code will be available for reproduction of the results in https://
github.com/derpberk/.

For the analysis of the results, the comparison between
rewards and in three algorithms, the following metrics must
be defined.

Sum of Residuals (SoR): This defines the absolute sum of
error between the estimated mean of the GP μ̂ðxÞ and the ground
truth value f ðxÞ. This metric is intended to be minimized.

SoR ¼
X
x∈X

jμðxÞ � f ðxÞj (17)

Different from other approaches,[6,16] the absolute error will be
used to analyze the model accuracy, as the mean squared error
does not reflect well small improvements into the model error.

Normalized Sum of Residuals (nSoR): Normalization of the
SoR with respect to the amount of information available in
ground truth.

nSoR ¼
P
x∈X

jμðxÞ � f ðxÞjP
x∈X

f ðxÞ (18)

Average Error in f ðxÞ local maxima (The local maxima is com-
puted in both ground truths by applying a maximum filter with a
neighborhood of 1.5 km and taking the locations where the mag-
nitude of the second-order derivative term is 0 using a Sobel

Algorithm 1. Safe Multiagent DDQL Algorithm.

1: Initialize replay memory D to capacity jDj
2: Initialize target Q-network Q

0
with weights θ0 ¼ θ

3: Initialize policy network Q with weights θ

4: for episode ¼ 1 to Emax do

5: Reset environment

6: Get initial observation o0 ¼ Oðs0Þ
7: for timestep ¼ 1 to T do

8: p � Uð0, 1Þ
9: if p < ε then

10: aj←Saf eConsensusðUð0, 1Þ, : : : ,Uð0, 1ÞÞ
11: else

12: aj←Saf eConsensusðQðo0, aÞ, : : : ,QðoN, aÞÞ
13: end if

14: Execute action aj

15: Observe rewards r j and new observations otþ1
j

16: Store every transition ðotj , atj , rtj , otþ1
j Þ in D

17: Sample random batch B of ðoj , aj , r j , ojþ1Þ from D

18: Set yj ¼ r j þ γQ
0 ðsjþ1, argmaxaQðsjþ1, a; θÞ; θ0Þ

19: Update weights by minimizing the loss:

LðθÞ ¼ 1
B

XB
j¼1

ðyj �Qðsj , aj ; θÞÞ2

20: θ0←θ� τ þ ð1� τÞ � θ0 ⊳ Polyak target update

21: end for

22: ε←minðεmin, ε� dεÞ.
23: end for

Algorithm 2. SafeConsensus algorithm.

Input: Positions Pt ¼ pt1, p
t
2, : : : , p

t
N of N agents at time t

Input: Values Q ¼ fQ1,Q2, : : : ,QNg that weight each agent’s action.

1: Initialize empty set of future positions Ptþ1∶ ¼ ∅

2: Obtain order of agents’ actions in decreasing order of their Q values:
j1, j2, : : : , jN, such that maxQj1

≥ maxQj2
≥ : : : ≥ maxQjN

.

3: for each agent j in order of actions do

4: Select greedy safe action

aj ¼ argmaxa∈AQjðaÞ
subjected to :

kPðptj þ ajÞ � p0Pk2 ≤ dsaf e ∀p0 ∈ Ptþ1

5: Ptþ1← Ptþ1∪ðptj þ ajÞ ⊳ Update next fleet positions.

6: Aselected ← Aselected∪aj ⊳ Update consensus actions.

7: end for

8: return Aselected

Table 1. Environment and model parameters.

Parameter Value

Number of GPs ðKÞ 18

Influence radius ðνkÞ 1.45 km

l interval ðlmin, lmaxÞ (0.1, 10)

Base uncertainty ðσ0Þ 1.0

Measurement noise ðσnÞ 1� 10�5

Max. distance ðdmaxÞ 29 km

Safety distance ðdsafetyÞ 300m

Movement distance ðdmeasÞ 580m

Map size ðH,WÞ ð58, 38Þ pixels
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filter.): This defines the mean error in the local maxima of the
ground truth f ðxÞ. This metric is useful to obtain a measurement
of the error in the most biologically dangerous spots.

Avg:SoR f ðx�Þ ¼ 1
# peaksff ðXÞg

X
x∈#:peaksff ðXÞg

jμðxÞ � f ðxÞj (19)

Max. Error in f ðxÞ local maxima: This defines the max error in
the local maxima of the ground truth f ðxÞ. This metric provides a
maximum bound of the error in the estimation of f ðxÞ.
Max: SoR f ðx�Þ ¼ maxfjμðxÞ � f ðxÞj∀x ∈ #:peaksfjf ðXÞjgg

(20)

5.1. Local Gaussian Process Performance

Initially, 18 local GPs, distributed 2 km apart (Figure 2), were val-
idated with simulations. The radius of influence νk for each pro-
cess was experimentally set at 1.45 km (5 pixels) based on the
granularity of the scalar fields. In Figure 7, 50 missions were sim-
ulated for the algae bloom scenario with three agents using non-
reactive path planners and various regression algorithms (global
GPs, k-nearest neighbours, decision tree) to assess local GPs with
offline paths. Despite all algorithms collecting the same informa-
tion at each instant, local GPs, on average, reduce the model esti-
mation error by almost 20 points of SoR, a 33% improvement
from 40 samples. With an increasing number of samples, local
GPs outperform a single global GP with the same information.
Other regressors, like k-nearest neighbors (kNN) (with k ¼ 5),
exhibit poor performance. Although decision tree accuracy drops
with sufficient samples, the early inference process is slow to
converge.

In Figure 8, computation times are compared, revealing
that a global GP experiences cubic growth with the number of
samples. The depicted time represents the average cumulative
time spent by the model server in model inference. This scalabil-
ity issue intensifies with more agents and a larger sample size.
Conversely, local GPs exhibit linear time growth with the

number of samples. While this might not significantly impact
small fleets, scalability becomes a concern as the number
of samples and vehicles increases. It’s important to note that,
in this simulation, no concurrency in the optimization of
local GPs was implemented. However, the fully parallelizable
model optimization process could further reduce computation
time.

In Figure 9, an example of local versus global GPs is pre-
sented, giving the same information in the particular case of
algae detection. It can be seen that global GPs, as formulated
in ref. [6], have estimation problems in areas of higher granular-
ity. This occurs because the global GPs maximize the marginal
likelihood of the kernel hyperparameters for the entire sample
space. In the case of algae monitoring, a priori it seems to be
that there are two distinct zones. Such areas of low pollution
concentration with high spatial correlation between samples
(posterior l is high) and zones of pollution hotspots with low cor-
relation (posterior l is small). As shown in Figure 10, the global
GP converges in a small l at the end of the mission, but as there
are several highly correlated samples in low contaminated zones,
the estimation in higher zones is affected. In the local GP case,
the estimation in both zones is isolated due to the locality of the
individual GPs.

By constraining a maximum l to 100 (high enough to consider
that all possible samples in the scenario are highly correlated), it
is possible to obtain a distribution over the length scale l for the
conditions of the previous experiment. In Figure 10, the result-
ing hyperparameter value of the posterior kernel can be observed
after maximization of the likelihood at the end of every mission.
In the global GP, the maximum likelihood is found in values
between 3 and 10. The less correlated samples will cause this
length scale to drop to represent both low-correlated and
high-correlated data. In the local GP case, the histogram shows
a multimodal distribution of the data. The parameter l is found to
maximize the marginal likelihood of the local GPs with values
lower than 10 and also with values in the limit of 100. This is
translated into the environmental task into smaller values around
algae blooms and higher length scales in zero-contaminated
zones. This shows that the local GP is able to bring up with richer
representation of an arbitrary parameter distribution. Without
loss of generality, it is reasonable to say that these GPs can be
used to estimate more efficiently scalar maps with richer distri-
bution of hyperparameters.

Figure 7. Accumulated inference time, between the proposed local GP
and the classic global GP.

Figure 8. Comparison of error between the proposed local GPs, and other
ML algorithms, in the Ypacaraí scenario, for 50 different scenarios using
different path planners. The colored area is the standard deviation.
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In short, these local GPs generally alleviate the computational
complexity with respect to the global counterpart. However, they
still have OðN3Þ complexity locally, and it may happen that an
excessive number of samples in a single GP severely slows down
the computation. On the other hand, in terms of the convergence
of the processes, the convergence of each local process is still not
guaranteed. This is closely related to the choice of the internal
structure of the correlation represented by the Kernel. An inade-
quate selection of the kernel would certainly lead to a conver-
gence of the local process. Although the locality of the
proposed GPs limits the effect on global convergence, it is still

a fundamental task to select the kernel taking into account how
the information we want to measure behaves.

5.2. DRL Fleet Training

For DRL policy training, two reward functions (Section 4.4) were
studied across fleets of 1–3 agents, each undergoing 10 000 mis-
sions of consistent duration (29 km - 50 steps). The evaluation
covered different fleet sizes and benchmarks (WQP and algae
bloom monitoring) to validate the approach under varied condi-
tions. Hyperparameters were adopted from previous studies[17]

Figure 9. Comparison between the final model μðXÞ and uncertainty σðXÞ using local GPs (down) and a global GP (up), with random explorative paths.

Figure 10. Histogram of RBF kernel length scales l after likelihood optimization with 100 sample points using global GPs (left) and the proposed local
GPs (right).
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to streamline the training process. DDQL consistently converges
to a similar policy with sufficient training episodes, falling within
typical literature hyperparameter ranges. The ε-greedy explora-
tion policy maintains ε values from 1 to εmin (0.05) in 50% of
the episodes to balance exploration and exploitation. Neural net-
work training employs a batch size of 64 and a learning rate of
0.0001. In Table 2, all training parameters are summarized.

In Figure 11, both rewards described in Section 4.4 are com-
pared for every possible combination of fleet size and bench-
mark, after 10.000 episodes of learning with the same
parameters. In general, the reward relating to changes in
μ̂ðXÞ is more aligned with the objective of minimizing the esti-
mation error. In the WQP case, an improvement of ≈26% with
p < 0.05 using a Wilcoxon ranked test can be observed. With 2
and 3 agents, the improvement is not significant, indicating that
both rewards could provide similar performance. Nonetheless,
the μðXÞ-changes reward obtains slightly better results earlier

than the σðXÞ-changes counterpart. The contrary happens in
the algae bloom benchmark. The μðXÞ-change provides better
and earlier performance in three fleet sizes. The error is ≈
50% better with all fleet sizes with p < 0.05. This makes sense
if it is considered that in the μðXÞ-change reward, higher rewards
are received only when the model update results in a significant
change. As themodel is prone to improve with every new sample,
the net changes in the model are an accurate estimator of the
error. In the σðXÞ-change reward, agents receive higher rewards
even when the prior and posterior models are close to each other.

Figure 12 illustrates the cumulative reward for each fleet
against prediction error, enabling the analysis of the correlation
between reward and the goal of minimizing error using the R2
score. The μðXÞ-changes reward yields an R2 score of �4.54,
while the σðXÞ-reward results in an R2 score of �40.42. The
μðXÞ-reward shows a more linear dependence with decreasing
error, in contrast to the σðXÞ-reward, which exhibits plateaus
along each reward–error trajectory, indicating that exploring
areas of low interest doesn’t significantly improve the error.
This comparison highlights the effectiveness of the μðXÞ-reward
in error reduction. Table 3 displays the average predictive uncer-
tainty values in the map. Encouraging a subtle reduction in pre-
dictive uncertainty leads to overconfidence in initially
uninteresting areas. Additionally, the Δσ reward results in a
24% lower final average uncertainty compared to the Δμ reward.

To validate DRL-trained policies and the use of local GPs, we
compare online estimation errors with those obtained using a
global GP with all collected data at the end (offline GP).
Figure 13 depicts the SoR curves, showing that local GPs achieve
results comparable to the global GP with full information. This
indicates that, despite minor improvements, local GPs, being
more flexible and time efficient, can perform as well as global

Table 2. Learning parameters for the DDQL algorithm.

Parameter Value

Learning rate 1� 10�4

Batch size 64

εmin 0.05

ε episode anneal val. dε 1.9� 10�4

τ 1� 10�4

Discount factor γ 0.99

Learning rate 1� 10�4

Activation Function ReLU

(a) (b)

Figure 11. Estimation error (SoR) comparison between final policies trained with μ-change reward (blue) and σ-change reward (orange) in a) WQP and
b) algae bloom benchmarks.
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GPs with a proper policy. The synergy between DRL for sequen-
tial information gathering and local GPs as an efficient surrogate
model generator is evident, as policies demonstrate low errors
independent of the model used (Figure 14).

5.3. Comparison with Other Algorithms

This work also compared the trained policies with other path
planning algorithms to validate the results. For this comparison,

the Δμ reward trained policies are used, as they show the best
performance in terms of exploration and intensification of
high-interest zones. The comparison is made with three different
path planners.

Lawn Mower Path Planner (LMPP): The LMPP consists of
maximizing the coverage of vehicles by taking samples in parallel
lines. Every agent selects a random initial direction to initialize
the path. When an obstacle is reached, the agent travels back in
the reverse direction in a parallel line. This algorithm will use
local GPs as a model for the contamination.

RandomWanderer Path Planner (RWPP): This approach gen-
erates random exploratory paths by selecting a direction of explo-
ration. Every agent selects a random free-obstacle direction until
a new obstacle is met. Then, the agent selects a direction differ-
ent from the previous direction to avoid retracing its steps. This
algorithm also uses local GPs as a model for the contamination.

GP-Enhanced Particle Swarm Optimization (EG-PSO): This
approach is taken directly from ref. [16]. In this approach, every
vehicle is a particle that will change its speed proportional to four
distances: 1) the distance to the maximum uncertainty, 2) the
distance to the maximum sampled value observed by the agent,
3) the distance to the maximum global value samples by the fleet,
and 4) the distance to the maximum value predicted by the
model.

Up to 300 different simulations were conducted for every
ground truth type and with every benchmark. We used six dif-
ferent seeds to reduce the effect of epistemic uncertainty in
the results. For a fair comparison, this evaluation set of ground
truths will be different from any other episode experimented dur-
ing training for the DQL. In Figure 15 and 16, the online

Figure 12. Accumulated reward versus the estimation error for every fleet size, reward type, and benchmark used.

Table 3. Average total uncertainty at the end of the missions, for the two
reward types, fleet size and benchmarks.

GT Reward N° Agents Mean σðXÞ
Algae Δμ 1 0.419

2 0.265

3 0.235

Δσ 1 0.338

2 0.147

3 0.104

WQP Δμ 1 0.252

2 0.152

3 0.024

Δσ 1 0.259

2 0.185

3 0.050
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estimation error is represented for the WQP and algae bloom
benchmarks, respectively. It is observed that, in general, the
DRL is able to obtain better results. In Table 4 (WQP benchmark)
and 5 (algae bloom benchmark), the metrics for the aforemen-
tioned simulations are presented, with the mean and standard
deviation values of each algorithm (Figure 17 and 18).

In the WQP task, notable improvement, particularly in the
multiagent case, is observed. Offline algorithms like LMPP or
RWPP consistently reduce errors over time. DQL demonstrates
adaptability, prioritizing actions with higher short- and long-term
rewards, resulting in a 45% average improvement over other
algorithms. LMPP, while robust with sufficient distance, tends
to make inefficient movements in the WQP benchmark due
to a lack of trajectory changes in low-interest areas. Random
exploration behaves similarly to LMPP, but RWPP, being more
exploratory, changes the monitoring front more frequently.
These findings affirm that an effective IPP enhances overall
modeling accuracy, even though using local GPs provides an

advantage. It’s reasonable to consider a significant dependence
on the modeling method and information richness acquired.

In the PSOmodel discussed in ref. [16], a significant challenge
arises in partitioning the search space among agents. Deployed
in close proximity within zones Z1,Z2,Z3 (as shown in Figure 1),
agents exhibit a gradient-descent behavior in the multiagent case.
Despite resembling a single agent due to similar local gradients
caused by the absence of a dispersion mechanism, PSO achieves
good convergence, especially in the single-agent scenario and at
episode completion (refer to Figure 19). Nevertheless, our

(a) (b)

Figure 13. Comparison of the online estimation error using the best μ-change reward with local GPs, and the offline error using a global GP, with the
same sample points, at the end of an episode in the a) WQP and b) algae bloom benchmarks.

Figure 14. Resulting path of running a simulation with the Δμ-reward
(left) and the Δσ-reward for the same WQP monitoring scenario (middle).

Figure 15. Estimation error between other algorithms (LMPP, RWPP,
PSO) and our DDQL trained policies with the μ-change reward, for the
WQP monitoring benchmark.
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proposed algorithm, leveraging the adaptive capacity of the
DDQL policy, demonstrates faster convergence even if it doesn’t
surpass PSO in the single-agent case (see Figure 15, Table 4).

The proposed algorithm presents good properties with respect
to the time of exploration and mean error with respect to the
other algorithms. This translates into an improvement of the
error with the second-best algorithm (EG-PSO), on average for
every fleet size, of a 32%, 15%, 6% at 33%, 66%, and 100%
respectively, of the distance traveled. In the particular case of
N ¼ 3, with 43% of the path distance budget traveled (16 steps
of 48 samples), the estimation error is 27.75% better than the
second-best algorithm at that point (PSO). Regarding the metrics
related to the error in the maximums of the benchmark function
(Avg:SoR in f ðx�Þ and Max: SoR in f ðx�Þ), it can be seen that the

proposed algorithm is able to reduce the average error in the con-
tamination maxima better than the other algorithms. 27% better
estimation in those points has been observed on average with the
DQL with respect to the second-best algorithm (RWPP).

In the second benchmark, with algae monitoring, the results
also indicate the advantage of using DRL. This second bench-
mark is more difficult to monitor, and this is reflected in the
improved results of DRL over the other algorithms. In terms
of estimation at the end of a mission, the results show a 17%
improvement over the second-best algorithm (LMPP) on average
for all fleet sizes. In this new case, the offline algorithms present
a robust but in most cases inefficient result. It can be observed in
Figure 16 that during the course of a mission, both present a
similar estimation error (no significant difference over a
Wilcoxon ranking test). From this it can be inferred that, in this
benchmark, the paths have to be less explorative and more
exploitative in the search for algae sources. This compounds
the need for a more comprehensive route planner that prioritizes
high-interest areas in pursuit of a better model. In the end, the
synergy between local GPs and an intelligent planner stands out
when information is sparse in the search space, by the GPs
reaching convergence earlier, in other words, to obtain a good
model with less samples and less movements.

The PSO algorithm, on the other hand, due to its high depen-
dence on the local gradients of each agent and the fact that the
global maximum uncertainty point is insufficient to guide the
fleet, is unable to perform on this benchmark as conceived in
ref. [16]. The paths result in the absence of local gradients in
a purely random scan unable to find the algae centroids in many
cases. When it comes to estimation, PSO utilizes a global GP.
However, the initial set of highly correlated samples causes
the global lengthscale to quickly reach its upper limit with the
first few samples. This, in turn, makes it difficult for the model
to converge later on, especially in the presence of new samples.

The DRL algorithm, in the algae bloom benchmark,
shows better improvement compared to previous approaches
(see Table 5). With respect to the second-best result (LMPP),
an average improvement of 49%, 55%, 48% at 33%, 66%, and

Figure 16. Estimation error between other algorithms (LMPP, RWPP,
PSO) and our DDQL trained policies with the μ-change reward, for the
algae bloom monitoring benchmark.

Table 4. Metric comparison between algorithms for the WQP modeling mission. The highlighted metrics refer to the best performance algorithm.

Algorithm Nagents SoRð33%Þ SoRð66%Þ SoRð100%Þ Avg:SoRinf ðx�Þ Max:SoRinf ðx�Þ

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

D-DQL 1 0.62 0.18 0.48 0.17 0.44 0.17 0.20 0.17 0.35 0.30

2 0.53 0.18 0.39 0.18 0.34 0.16 0.15 0.14 0.24 0.29

3 0.40 0.15 0.27 0.09 0.24 0.07 0.09 0.08 0.17 0.16

PSO[16] 1 0.81 0.14 0.52 0.19 0.40 0.08 0.37 0.26 0.39 0.30

2 0.75 0.15 0.41 0.15 0.34 0.06 0.22 0.14 0.24 0.18

3 0.71 0.13 0.40 0.14 0.33 0.10 0.21 0.15 0.39 0.28

LMPP 1 0.98 0.07 0.84 0.16 0.63 0.19 0.43 0.25 0.67 0.32

2 0.97 0.08 0.79 0.17 0.54 0.20 0.35 0.25 0.58 0.35

3 0.83 0.18 0.60 0.22 0.41 0.17 0.24 0.20 0.40 0.31

RWPP 1 0.88 0.16 0.75 0.20 0.66 0.20 0.46 0.26 0.69 0.32

2 0.77 0.19 0.58 0.19 0.47 0.17 0.28 0.21 0.46 0.31

3 0.70 0.20 0.49 0.17 0.39 0.13 0.21 0.15 0.39 0.28

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2300850 2300850 (15 of 18) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300850 by D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein., W

iley O
nline L

ibrary on [10/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


Figure 18. Resulting paths for all other algorithms (LMPP, RWPP, PSO) and our DDQL trained policy with the μ-change reward, for the algae bloom
monitoring benchmark.

Figure 17. Resulting paths for all other algorithms (LMPP, RWPP, PSO) and our DDQL trained policy with the μ-change reward, for the WQP monitoring
benchmark.

Figure 19. Box plot representation of the final normalized error for 300 experiments with different algorithms. The upper plot corresponds with WQP
benchmark. The lower plot corresponds with the algae bloom benchmark.
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100% respectively, of the distance traveled, among all fleet sizes,
is obtained. Improvement is also translated into higher speeds of
model convergence. With every agent included in the fleet, the
DRL is able to reduce the error earlier (35% faster on average). In
the estimation of pollution maxima, the DRL finds the maxi-
mums with higher average precision (up to 42% lower error
at these points for three vehicles) and with a lower maximum
error (up to 40% lower error at these points for three vehicles).
This indicates that, in this new benchmark, the performance is
robust and provides a good estimate of the errors in the most
contaminated areas. This will be convenient when an early warn-
ing system requires to track dangerous spots of algae blooms for
prevention and bath restrictions.

6. Conclusion

This article presents a framework for training and deploying
multiagent fleets of ASVs for environmental monitoring mis-
sions. The framework combines local GPs for model estimation
and deep policies trained with DRL for decision-making. Two
stochastic benchmark simulators were introduced to validate
results for different environmental monitoring missions.

Local GPs significantly improve model computation time and
yield a 30% average reduction in estimation error with various
path planners. These local models excel in estimating scalar
fields of varying smoothness and multimodal hyperparameter
distributions, demonstrating effectiveness in challenging scenar-
ios like algae bloom monitoring. Combining different local mod-
els enhances granularity in estimating scalar functions with
distinct local properties, especially beneficial in scenarios with
steep gradients, such as algae monitoring.

Deep policies, derived from a DRL algorithm, along with a
consensus decision method, yield efficient monitoring policies
complying with safety constraints during training. The proposed
consensus mechanism is scalable, allowing for the independent
adjustment of the number of agents and observations. Studying
an appropriate reward function, based on the total net change of

the model Δμ, improves training efficiency by 26% and achieves
27% average enhancement in benchmarks with other path plan-
ning algorithms. Specialization of the DRL algorithm in each
mission results in an additional 30% reduction in errors with
improved efficiency and measurement redundancy. The combi-
nation of GPs with DRL emerges as a superior strategy for this
mission type, with the reward function supporting online fleet
retraining under real conditions based on the model’s conver-
gence estimation rather than the real ground truth.

Future lines of research should be able to extend this work to
find policies capable of dealing with the multiobjective case. In
the multiobjective case, there are several variables to monitor,
and it is necessary to balance the exploration with dissimilar cri-
terion among agents while maintaining cooperation between
agents. Another important aspect to be addressed, which has
been simplified in this article, is the characterization of sensors
with varying noise and different measurement capabilities. In a
realistic environment with different variables to be measured,
vehicles could present sensors with different noises due to dec-
alibration and manufacturers. One last improvement shall be to
address with the generalization capabilities of the policy. When
the environmental model is misaligned with the measurements
the agents take, it is necessary to design a method to variate not
only the paths of the agents, but also switch between different
policies trained with other ground truths. Another important
aspect will be the dynamic definition of the influence area sizes
and positions. As the model is constructed, this method allows
for an online redefinition of the local GPs to enhance the compu-
tational efficiency and the error minimization.
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