Bueso Bello, Jose Luis und Chauvel, Benjamin und Carcereri, Daniel und Haensch, Ronny und Rizzoli, Paola (2024) Forest Mapping with TanDEM-X InSAR Data and Self-Supervised Learning. In: International Geoscience and Remote Sensing Symposium (IGARSS). International Geoscience and Remote Sensing Symposium (IGARSS), 2024-07-07 - 2024-07-12, Athens, Greece. ISBN 978-166542792-0.
![]() |
PDF
1MB |
Kurzfassung
Deep learning methods, used in a fully-supervised learning way, have shown good capabilities for mapping forests with TanDEM-X interferometric data, being able to generate timetagged forest maps at large-scale over tropical forests. All these maps have been generated at 50 m resolution to reduce the computation burden. In this work, we now aim to exploit the full-resolution capabilities of the TanDEM-X interferometric dataset, processed at 6 m resolution. In order to cope with the lack of reliable reference data at such high resolution, we focus on the investigation of self-supervised learning approaches. The availability of a reference map over Pennsylvania, USA, based on Lidar acquisitions at 1 m resolution, allowed us to compare different deep learning approaches. First promising results show the possibility to extend the proposed self-supervised learning approach over areas where the lack of reference data prevent us from using fully-supervised deep learning methods.
elib-URL des Eintrags: | https://elib.dlr.de/204097/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Forest Mapping with TanDEM-X InSAR Data and Self-Supervised Learning | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Juli 2024 | ||||||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
ISBN: | 978-166542792-0 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Synthetic Aperture Radar, TanDEM-X, Amazon, forest mapping, deforestation monitoring, deep learning, convolutional neural network, self-supervised learning, autoencoder | ||||||||||||||||||||||||
Veranstaltungstitel: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Veranstaltungsort: | Athens, Greece | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 7 Juli 2024 | ||||||||||||||||||||||||
Veranstaltungsende: | 12 Juli 2024 | ||||||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Unterstützung TerraSAR-X/TanDEM-X Betrieb | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme Institut für Hochfrequenztechnik und Radarsysteme > Satelliten-SAR-Systeme Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||||||||||||||
Hinterlegt von: | Bueso Bello, Jose Luis | ||||||||||||||||||||||||
Hinterlegt am: | 15 Mai 2024 13:20 | ||||||||||||||||||||||||
Letzte Änderung: | 11 Nov 2024 17:27 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags