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ABSTRACT

Deep learning models trained in a fully supervised way have
shown encouraging capabilities for mapping forests with
TanDEM-X interferometric data, being able to generate time-
tagged forest maps at large-scale over tropical forests. These
maps have been generated at 50 m resolution to reduce the
computation burden. In this work, we now aim to exploit the
high-resolution capabilities of the TanDEM-X interferomet-
ric dataset, processed at only 6 m resolution. In order to cope
with the lack of reliable reference data at such high resolu-
tion, we focus on the investigation of self-supervised learning
approaches. The availability of a reference map over Penn-
sylvania, USA, based on Lidar acquisitions at 1 m resolution,
allows us to compare different deep learning approaches.
First promising results show the possibility to extend the pro-
posed self-supervised learning approach over areas where the
lack of reference data prevent us from using fully supervised
deep learning methods.

Index Terms— Synthetic Aperture Radar, rainforest, de-
forestation monitoring, deep learning, convolutional neural
network, U-Net, autoencoder

1. INTRODUCTION

Forests play an essential role in supporting life on our planet.
Their monitoring is of key importance for assessing changes
in forest coverage and biomass. This can be done by gener-
ating and analyzing large-scale forest maps using spaceborne
remote sensing. Previous global large-scale forest maps have
been generated using optical or hyperspectral data, such as
the 30 m resolution world forest coverage map derived from
Landsat [1]. More recent global maps of land cover have been
generated at 10 m resolution using optical data and including
a tree cover layer, such as the ESA WorldCover 2021 map [2].
However, optical-based approaches can be hindered by cloud
coverage, particularly over tropical regions and north latitude
areas, which are characterized by long rainy seasons that ob-
scure the ground from view for several months per year.

Synthetic Aperture Radar (SAR) systems offer an attrac-
tive solution to monitor these areas thanks to their ability to
acquire data independently from weather and daylight condi-
tions. The first global forest map based on SAR images was

generated from L-band ALOS PALSAR satellite data, using
cross-polarization backscatter images, and was provided at a
posting of 25 m [3]. Recent studies have also demonstrated
the usefulness of Interferometric Synthetic Aperture Radar
(InSAR) systems for monitoring vegetated areas, particularly
the added value of the interferometric coherence, as provided
by the TanDEM-X (TerraSAR-X add-on for Digital Eleva-
tion Measurement) bistatic mission [4]. The interferometric
coherence, defined as the normalized complex correlation co-
efficient between the two InSAR acquisitions, gives informa-
tion about the amount of noise in the interferograms and is
sensitive to different decorrelation sources, such as the lim-
ited signal-to-noise ratio and volume scattering mechanisms.
This last aspect is quantified by the volume decorrelation fac-
tor (γV ol), which was the main input feature for the genera-
tion of the global TanDEM-X Forest/Non-Forest (FNF) map,
generated using a machine learning (ML) fuzzy clustering al-
gorithm and released at a resolution of 50× 50 m [4].

The potential of deep learning (DL) approaches for for-
est mapping with TanDEM-X images is demonstrated in [5],
which compares three state-of-the-art Convolutional Neural
Networks (CNNs) architectures, showing very promising per-
formance. A U-Net architecture [6] resulted to be the most
effective one and was the starting point for a DL approach
with further model generalization capabilities, where an ad-
hoc training strategy was developed to distinguish forests
in TanDEM-X images acquired with different acquisition
geometries over the Amazon rainforest [7]. The classifi-
cation improvements reached by applying DL methods on
TanDEM-X data, have allowed for the generation of time-
tagged mosaics at 50 m resolution over tropical forests by
utilizing all nominal TanDEM-X acquisitions between 2011
and 2017, skipping the weighted mosaicking of overlapping
images used in the clustering approach for achieving a good
final accuracy. Furthermore, the trained U-Net over the Ama-
zon rainforest has been used to extend the forest mapping to
other tropical forests over Africa and Asia, also showing a
high accuracy and a good agreement with other land cover
maps [7].

The objective of the present study is to extend the pre-
vious work by exploiting the full-resolution TanDEM-X In-
SAR dataset. By applying sophisticated InSAR process-
ing techniques [8], it is possible to process the TanDEM-X



single-look slant-range complex images, acquired in stripmap
single-polarization mode, to an independent pixel spacing of
only 6 m. With such high-resolution data, we aim at im-
proving the forest mapping accuracy and detecting forest
degradation phenomena. Deforestation paths in the middle of
dense forested areas, which are not visible at 50 m resolution,
can be successfully detected using 6 m resolution images.
Moreover, a finer contour delimitation of the deforested ar-
eas is expected. However, the lack of reliable reference data
at such high resolution to train a fully-supervised (FL) DL
approach moved us to the investigation of a self-supervised
learning (SSL) DL approach. An available forest reference
map of 2010 at 1 m resolution over Pennsylvania, USA, al-
lowed us to investigate the performance of SSL DL methods.
The investigations and first results are now presented in this
paper.

The paper is organized as follows: in Section 2, the cur-
rent DL approaches for the exploitation of the full-resolution
TanDEM-X bistatic dataset are presented. In Section 3 the
data used in the training, validation and testing of the differ-
ent DL approaches are introduced. Preliminary results of this
study are presented in Section 4. Finally, in Section 5 the
conclusions are drawn.

2. METHODOLOGY

The main strategy of our work is depicted in Figure 1, where
SSL is used to improve the final classification with supervised
learning (SL). For the SSL part, the goal is to train a model
(e.g. an autoencoder) that maps an image to a representa-
tion of visual contents without the necessity of human anno-
tation, expecting that the extracted features will benefit the
forest mapping downstream task in the SL part, by reducing
the amount of necessary labeled reference data to train a U-
Net for semantic segmentation.

2.1. Self-supervised learning

The purpose of autoencoders is to efficiently encode the in-
put data by learning the most informative features in the data
rather than every single small detail. While there are plenty of
SSL methods used for remote sensing applications [9], only
very few studies have applied them to single-pass InSAR data.
In the current study, we evaluate a standard and a masked
autoencoder, denoted here as identity and inpainting tasks.
While both aim at reconstructing the original input image,
the masked autoencoder has to tackle the additional challenge
that part of the input is artificially occluded. In our case sev-
eral requirements drove the design of the autoencoder. Since
the weights of the encoder need to be transferable to the U-
Net, it needs to have the same structure as the U-Net encoding
path. The decoder part is only made of transposed convolu-
tions without skip connections from the encoder.
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Fig. 1. Strategy to combine DL-based approaches for forest
mapping with TanDEM-X high-resolution data.

2.2. Supervised learning

For the following SL part, we built on the previous works in
[5, 7]. A U-Net-shaped CNN is considered in our approach,
since it showed the best performance for forest classification
using TanDEM-X data [5].

2.3. Scenarios

We defined different scenarios to assess the impact of a self-
supervised pre-training on the downstream task, as well as
to find a compromise between the final performance and the
amount of reference data required to reach it. The best case
scenario, which represents our baseline, consists of training a
U-Net model in a fully supervised fashion with as much ref-
erence data as possible. This scenario is defined as FL100,
meaning fully-supervised learning with 100% of the labeled
data. Different competing scenarios are created based on: a)
the pretext task used in the SSL part (identity or inpainting);
b) the type of training after transferring the weights from SSL
to FL. Two possibilities have been tested: Freezing the trans-
ferred encoder weights of the U-Net and training only its de-
coder (D) part or using the weights for initialization of the
encoder part of the U-Net, but afterwards training the whole
U-Net (D + E); c) usage of a reduced amount of labeled data
in the SL part (1.5%, 8%, and 22%), selected from the ones
used for the FL100 case and being representative of the dif-
ferent TanDEM-X acquisition geometries.

3. DATA

To overcome the lack of reliable reference data at resolutions
< 10 m, which are useful to properly train FL DL methods as
in [7], we now investigate SSL techniques with TanDEM-X
data acquired over the state of Pennsylvania, USA, where a
reliable and high-resolution forest map is available.

3.1. Test area and reference map

The state of Pennsylvania, USA, has been selected as test
area thanks to the availability of a high-resolution and reli-
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Fig. 2. TanDEM-X images acquired in 2011 over Pennsyl-
vania, USA. For the TanDEM-X images indicated in green, a
high-resolution reference forest/non-forest map is available.

able forest map. The used reference data is based on optical
and Lidar data, acquired over Pennsylvania up to 2010, which
were combined to generate a forest/non-forest classification
map with a ground resolution of 1× 1 m [10]. For our work,
we downsampled the original resolution to match that of the
TanDEM-X images. By counting the input pixels within a
cell of 6 × 6 m, the majority class (forest or non-forest) has
been set as reference for the map at 6 m resolution and used
for the following investigations.

3.2. TanDEM-X InSAR dataset

The use of Φ-Net, a developed DL strategy for InSAR pa-
rameter estimation and denoising [8], allows for generating
TanDEM-X InSAR products with a 6 m resolution. As in
the previous work [7], we rely on the backscatter, the inter-
ferometric coherence, and the volume decorrelation factor as
main input features from the TanDEM-X InSAR dataset. To
describe the acquisition geometry, the height of ambiguity
(hamb) and the local incidence angle are selected as inputs for
our DL approaches, too. To minimize the time span between
reference data and TanDEM-X acquisitions, mainly acquisi-
tions of 2011 have been used for training purposes only. Some
TanDEM-X data of 2012 have been utilized as well to extend
the range of hamb seen by the CNN in the training and valida-
tion processes. In all cases, the input dataset for training, val-
idation and testing, is divided into patches of 128×128 pixels
with the 5 channels defined by the considered TanDEM-X in-
put features.

Figure 2 shows the TanDEM-X images acquired in 2011
over Pennsylvania, USA. In green are depicted TanDEM-X
acquisitions which overlay the area with reference data.
These acquisitions are employed by SL approaches as well
as to maximize the extent of the training dataset for the SSL
part. The TanDEM-X images indicated in brown are used
only in the SSL investigations, since no reference data are
available. To transfer knowledge as relevant as possible from
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Fig. 3. Performance results obtained for the TanDEM-X im-
ages acquired over the test area reserved for the evaluation
of the different implemented DL approaches. a) Test images
with hamb < 40 m; b) Test images with hamb ∈ [40 − 50] m;
c) Test images with hamb > 65 m.

the autoencoder to the U-Net, it is necessary that the autoen-
coder learns from the complete range of possible acquisition
geometries of TanDEM-X considering both hamb and orbit
directions. We use acquisitions from 2011, 2012, 2013 and
2018 for the SSL training and validation. A test area for the
different DL scenarios, representative of the Pennsylvania’s
landscape, has been selected for testing the models (blue
shadowed area in Figure 2). These images are under no cir-
cumstances used for any learning task, in order to provide
a rigorous performance evaluation of the model. For the
purpose of testing on the whole variability of hamb we build
different sets of test acquisitions in which we distinguish three
ranges of hamb, named low, medium, and high, corresponding
to hamb < 40 m, hamb ∈ [40− 50] m and hamb > 65 m.

4. RESULTS

The obtained results for the test dataset are presented in
Figure 3. Up to three simulations have been run for each DL
approach. The average f1-score, weighted by the number of
pixels belonging to each class (forest/non-forest), is depicted.
In general for the whole test dataset and for all scenarios, the
performance improves when using more labeled data in the
SL part. Using the inpainting pretext task in the SSL training,
better results are achieved. With respect to the trainability of
the SL part, the most competitive results are obtained when
just initializing the weights of the encoder and training both
encoder and decoder parts of the U-Net.

First results are shown in Figure 4, where the detected for-
est map with TanDEM-X images at 6 m resolution is over-
laid to an optical image obtained from Google Earth. A high
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Fig. 4. Overlay of the detected forest areas with TanDEM-X
at 6 m resolution over an optical image, obtained from Google
Earth.

agreement is observed with respect to the optical image. The
borders of the forested areas are very well delimited and sin-
gle lines of trees are well detected. Narrow roads in between
the forests are visible as well.

5. CONCLUSIONS AND OUTLOOK

In this study we have successfully demonstrated the effec-
tiveness of deep convolutional neural networks for mapping
forests using TanDEM-X bistatic InSAR acquisitions at a res-
olution of 6 m. To address the challenge of limited referenced
data at such a high resolution, we proposed and evaluated
different self-supervised pre-training approaches. Specifi-
cally, the use of inpainting and sufficient data representing
all TanDEM-X acquisition geometries showed considerable
benefits, such as a better performance and stability during
training than the other competitive scenarios. The successful
implementation of the self-supervised pre-training strategy is
extremely promising, particularly in regions like the Amazon
rainforest, where reference labelled data is scarce and chal-
lenging to obtain. This approach opens up new possibilities
for accurate forest mapping with TanDEM-X bistatic images
leading to improved environmental monitoring and conserva-
tion efforts over such areas. In the final paper, we will present
more consolidated results and validation.
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