Bueso Bello, Jose Luis und Chauvel, Benjamin und Carcereri, Daniel und Haensch, Ronny und Rizzoli, Paola (2024) Deep Learning-based Approaches for Forest Mapping with TanDEM-X Interferometric Data. In: Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, Seiten 972-977. VDE Verlag GmbH. European Conference on Synthetic Aperture Radar (EUSAR), 2024-04-23 - 2024-04-26, Munich, Germany. ISBN 978-3-8007-6286-6. ISSN 2197-4403.
![]() |
PDF
2MB |
Kurzfassung
Deep learning models trained in a fully supervised way have shown encouraging capabilities for mapping forests with TanDEM-X interferometric data, being able to generate time-tagged forest maps at large-scale over tropical forests. These maps have been generated at 50 m resolution to reduce the computation burden. In this work, we now aim to exploit the high-resolution capabilities of the TanDEM-X interferometric dataset, processed at only 6 m resolution, for forest mapping purposes. In order to cope with the lack of reliable reference data at such a high resolution, we focus on the investigation of self-supervised learning approaches. The availability of a reference map over Pennsylvania, USA, based on Lidar acquisitions at 1 m resolution, allows us to compare different deep learning approaches. The obtained results show the possibility to extend the proposed self-supervised learning approach over areas where the lack of reference data prevent us from using fully supervised deep learning methods.
elib-URL des Eintrags: | https://elib.dlr.de/203893/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Deep Learning-based Approaches for Forest Mapping with TanDEM-X Interferometric Data | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | April 2024 | ||||||||||||||||||||||||
Erschienen in: | Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Seitenbereich: | Seiten 972-977 | ||||||||||||||||||||||||
Verlag: | VDE Verlag GmbH | ||||||||||||||||||||||||
ISSN: | 2197-4403 | ||||||||||||||||||||||||
ISBN: | 978-3-8007-6286-6 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Synthetic Aperture Radar, TanDEM-X, rainforest, tropical forest, forest mapping, deforestation monitoring, deep learning, convolutional neural network, self-supervised learning, autoencoder | ||||||||||||||||||||||||
Veranstaltungstitel: | European Conference on Synthetic Aperture Radar (EUSAR) | ||||||||||||||||||||||||
Veranstaltungsort: | Munich, Germany | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 23 April 2024 | ||||||||||||||||||||||||
Veranstaltungsende: | 26 April 2024 | ||||||||||||||||||||||||
Veranstalter : | VDE | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Unterstützung TerraSAR-X/TanDEM-X Betrieb | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme Institut für Hochfrequenztechnik und Radarsysteme > Satelliten-SAR-Systeme Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||||||||||||||
Hinterlegt von: | Bueso Bello, Jose Luis | ||||||||||||||||||||||||
Hinterlegt am: | 24 Apr 2024 14:36 | ||||||||||||||||||||||||
Letzte Änderung: | 05 Jul 2024 11:32 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags