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Abstract

Deep learning models trained in a fully supervised way have shown encouraging capabilities for mapping forests with
TanDEM-X interferometric data, being able to generate time-tagged forest maps at large-scale over tropical forests. These
maps have been generated at 50 m resolution to reduce the computation burden. In this work, we now aim to exploit
the high-resolution capabilities of the TanDEM-X interferometric dataset, processed at only 6 m resolution, for forest
mapping purposes. In order to cope with the lack of reliable reference data at such a high resolution, we focus on the
investigation of self-supervised learning approaches. The availability of a reference map over Pennsylvania, USA, based
on Lidar acquisitions at 1 m resolution, allows us to compare different deep learning approaches. The obtained results
show the possibility to extend the proposed self-supervised learning approach over areas where the lack of reference data
prevent us from using fully supervised deep learning methods.

1 Introduction

Forest areas, occupying around 30% of the Earth’s land
surface, play an essential role in supporting life on our
planet. They are aprimary player to reduce greenhouse
gas concentrations, allowing control of climate change,
and they serve as natural habitats for a variety of ani-
mal species, preserving biodiversity and ensuring healthy
ecosystems. Moreover, they also provide valuable re-
sources such as biomass, food, and livelihoods for many
people worldwide. For this reason, the generation of large-
scale forest maps is of key importance for monitoring
changes in forest coverage and biomass. Previous global
forest maps have been generated using optical or hyper-
spectral data, such as the 30 m resolution world forest cov-
erage map derived from Landsat optical data between 2010
and 2015 [1]. More recent global maps of land cover have
been generated at 10 m resolution using optical data and in-
cluding a tree cover layer, such as the Finer Resolution Ob-
servation and Monitoring of Global Land Cover (FROM-
GLC) map from 2017 [2] and the ESA WorldCover 2021
map [3].
However, optical-based approaches can be hindered by
cloud coverage, particularly over tropical regions and north
latitude areas, which are characterized by long rainy sea-
sons that obscure the ground from view for several months
per year. Synthetic Aperture Radar (SAR) systems offer
an attractive solution to monitor these areas thanks to their
ability to acquire data independently from weather and
daylight conditions. The first global forest coverage map
based on SAR images was generated from L-band ALOS-
PALSAR satellite data, using cross-polarization backscat-
ter images, and was provided at a posting of 25 m [4]. Re-
cent studies have also demonstrated the usefulness of inter-

ferometric SAR (InSAR) systems for monitoring vegetated
areas, particularly the added value of the interferometric
coherence [5].
In this context, the TanDEM-X (TerraSAR-X add-on for
Digital Elevation Measurement) mission maps the Earth’s
surface providing single images at high-resolution from
the recorded backscattered signal as well as highly accu-
rate unique InSAR products acquired in bistatic mode [6].
The advantage of flying two satellites in close formation,
constituting a single-pass InSAR system, adds valuable in-
formation to the amplitude data, such as the the interfer-
ometric phase and coherence. The interferometric coher-
ence, defined as the normalized complex correlation coef-
ficient between the two InSAR acquisitions, gives informa-
tion about the amount of noise in the interferograms and
is sensitive to different decorrelation sources, such as the
limited signal-to-noise ratio and volume scattering mecha-
nisms. This last aspect is quantified by the volume decor-
relation factor γ

Vol
, which was the main input feature for

the generation of the global TanDEM-X Forest/Non-Forest
(FNF) map, generated using a fuzzy clustering algorithm
and released at a resolution of 50×50 m [5].
The potential of Deep Learning (DL) for feature extrac-
tion and forest mapping from TanDEM-X SAR images
has been demonstrated in [7] and [8]. The classification
improvements applying DL methods on TanDEM-X data
have allowed for the generation of time-tagged mosaics
at 50 m resolution over the tropical forests by utilizing
the nominal TanDEM-X acquisitions between 2011 and
2017, with no need for sophisticated mosaicking strate-
gies and for the averaging of multiple coverages in or-
der to achieve a satisfying accuracy. The objective of the
present study is to extend the previous work by exploit-
ing the full-resolution TanDEM-X InSAR dataset. Promis-



ing preliminary results were presented in [7] and [9], both
based on a limited set of single TanDEM-X full-resolution
images over a temperate forest in Pennsylvania (USA). In
[9], the TanDEM-X interferometric acquisitions were pro-
cessed with a non-local filtering technique and they were
classified using a similar clustering approach as the one
used for the global TanDEM-X FNF map [5]. By applying
further sophisticated InSAR processing techniques [10],
it is possible to process the TanDEM-X single-look slant-
range complex images acquired at 3 m resolution (stripmap
single-polarization mode) to an independent pixel spacing
of 6 m. With such high-resolution data, we aim at im-
proving the forest mapping accuracy and to detect forest
degradation phenomena. Deforestation paths in the mid-
dle of dense forested areas, which were not visible at 50 m
resolution, as well as a finer contour delimitation of the
deforested areas, are expected to be successfully detected
using 6 m resolution images. However, the lack of refer-
ence data at such a high-resolution to train a Supervised
Learning (SL) DL approach, moved us to the investigation
of a Self-Supervised Learning (SSL) DL approach with
TanDEM-X InSAR data. The investigations and results are
presented in this paper.
The paper is organized as follows: in Section 2,
past investigations for large-scale forest mapping with
TanDEM-X with DL techniques are summarized. The
current DL developments for the exploitation of the full-
resolution TanDEM-X bistatic dataset, including first re-
sults, are presented in Section 3. Finally, in Section 4 the
conclusions are drawn.

2 State of the art in forest mapping
with DL and TanDEM-X

To generate binary classification maps through se-
mantic segmentation for forest classification using
TanDEM-X bistatic InSAR data and DL techniques, a
study was conducted in [7]. Three state-of-the-art Con-
volutional Neural Networks (CNNs) architectures were
investigated, namely Residual Network (ResNet), Dense
Network (DenseNet), and U-Shaped Network (U-Net).
Different input features, including the backscatter, the
interferometric coherence, and the volume decorrelation
coefficient, were used to train the different CNNs, with the
aim of evaluating their impact on the final classification
accuracy. The study was performed on a small dataset con-
sisting of individual TanDEM-X images at full-resolution
(12 m) covering a temperate forest area in Pennsylvania,
USA. A U-Net architecture [11], was able to achieve the
best overall performance out of all the analyzed models.
However, the results lacked adequate generalization of
the model for large-scale mapping, as a larger and more
diverse training dataset was needed.
Based on this work, a deep convolutional neural network
approach for large-scale mapping of forests and water
surfaces using TanDEM-X bistatic InSAR acquisitions at
50 m resolution was presented in [8]. The proposed ap-
proach extends the generalization capabilities of the model
by training on a large amount of different geometries. It

employed TanDEM-X data across the Amazon region for
the training process. The basic idea involved utilizing the
height of ambiguity (hamb) as the main characterizing fea-
ture of the TanDEM-X acquisition geometry. This was
combined with the local incidence angle, in order to ac-
count for variabilities in the slant-range direction. Fur-
thermore, a specific training approach was implemented,
considering distinct ranges of acquisition incidence angles.
More than 50,000 TanDEM-X images acquired over the
tropical forests between the end of 2010 and the middle
of 2017 were classified with the trained CNN. In general,
thanks to its capabilities in understanding two-dimensional
patterns, the CNN performs much better with respect to
the clustering approach, as it is able to generate forest maps
with continuous forested and non-forested areas, which are
less noisy. This allowed for forest mapping over tropical
regions regardless of the geometry of acquisition. Up to
three time-tagged mosaics have been generated over the
Amazon rain forest, and two over the other tropical forest
areas located in Africa and South-East Asia, respectively.
The results showed a good agreement with external ref-
erence maps and a significant accuracy improvement with
respect to the baseline clustering approach utilized for the
generation of the global TanDEM-X FNF map.

3 Exploiting the TanDEM-X Full-
resolution Dataset

The exploitation of the full-resolution TanDEM-X inter-
ferometric dataset is possible also thanks to newly devel-
oped DL strategies for InSAR parameter estimation and
denoising [10]. In particular, the new processing skills
introduced by the use of the Φ-Net allow to generate
TanDEM-X InSAR products with a 6 m resolution. With
the generation of forest maps at this resolution we aim at
mitigating previous limitations, such as the detection of
narrow roads and small clear-cuts within the vegetated ar-
eas, which occurred when considering mid-resolution data
at 50 m.
To overcome the lack of reliable reference data at reso-
lutions < 10 m, which are useful to properly train SL DL
methods as in [8], we now investigate SSL techniques. The
main purpose of our study is to assess the relevance of SSL
approaches to reduce the amount of referenced data needed
for training a DL architecture to effectively map forests in
different environments using TanDEM-X data.

3.1 Test area and input dataset
The state of Pennsylvania, USA, has been selected as test
area due to the availability of a high-resolution and reli-
able forest map, courtesy from the University of Mary-
land [12]. In Figure 1 the green area indicates where
reference data are available. Optical and Lidar data,
acquired over this region up to 2010, were combined
to generate a forest/non-forest classification map with a
ground resolution of 1 m × 1 m [12]. For our work, we
downsampled the original resolution to match that of the
TanDEM-X images. By counting the input pixels within a



Figure 1 TanDEM-X images acquired in 2011 over
Pennsylvania, USA. For the TanDEM-X images indi-
cated in green, high-resolution reference data is available.
TanDEM-X images shown in brown are only used in the
SSL approach.

cell of 6 m × 6 m, the majority class (forest or non-forest)
has been set asreference for the map at 6 m resolution
and used for further investigations. A test area, represen-
tative of the Pennsylvania’s landscape, has been selected
for testing the models (blue shadowed area in Figure 1).
These data are under no circumstances used for any learn-
ing task in order to have results as unbiased as possi-
ble. Moreover, the test images are representative of the
whole TanDEM-X acquisition geometries. Please note, the
TanDEM-X acquisitions depicted in brown in Figure 1 are
used only in the SSL investigations, since no reference data
are available.
As in previous works [8], we rely on the backscatter, the
interferometric coherence, and the volume decorrelation
factor as main input features from the TanDEM-X InSAR
dataset. To describe the acquisition geometry, the hamb
and the local incidence angle are selected as inputs, too.
Figure 2 shows the distribution of the hamb over the test
region for different years. TanDEM-X acquisitions are
available for almost all considered hamb values. Please
note that, to minimize the time span between reference
data and TanDEM-X acquisitions, mainly acquisitions of
2011 have been used for training purposes only. Some
TanDEM-X data of 2012 have been utilized as well to ex-
tend the range of hamb seen by the CNN in the training
and validation processes. In all cases, the input dataset for
training, validation and testing, is divided into patches of
128 × 128 pixels with the 5 channels defined by the con-
sidered TanDEM-X input features.

3.2 Deep learning-based approaches
The main strategyof our work is depicted in (Figure 3),
where SSL is used to improve the final classification with
SL. For the SSL part, the goal is to train a model (e.g. an
autoencoder) that maps an image to a representation of vi-
sual contents without the necessity of human annotation,
expecting that the extracted features will benefit the down-
stream tasks. For the SL part, based on previous works, a

Figure 2 Distribution of the height of ambiguity, for dif-
ferent years, with which TanDEM-X images were ac-
quired over Pennsylvania, USA.

Figure 3 Strategy to combine DL-based approaches for
forest mapping with TanDEM-X data.

U-Net-shaped CNN is considered in our approach, since it
showed the best performance for forest classification using
TanDEM-X data [7]. After a first self-supervised training,
which does not require the use of external reference data,
we transfer weights from the autoencoder to the U-Net for
the segmentation task.
Autoencoders are DL architectures capable of reducing the
dimensionality of the input data and reconstruct it from
the lowdimensional space called latent space. The purpose
of autoencoders is to efficiently encode the input data by
learning the most informative features in the data rather
than every single small detail. While there are plenty of
SSL methods used for remote sensing applications [13],
only very few studies have applied them for InSAR data.
In the current study, we evaluate a standard and a masked
autoencoder - denoted as "identity" and "inpainting" below.
While both aim to reconstruct the original input image, the
masked autoencoder has to tackle the additional challenge
that part of the input is artifically occluded. In our case
several requirements drove the design of the autoencoder.
Since the weights of the encoder need to be transferable to
the U-Net, it needs to have the same structure as the U-Net
encoding path. Figure 4 shows the chosen design, where
the encoding part is the same as the U-Net and the decoder
part is only made of transposed convolutions without skip
connections from the encoder.
The proposed approach aims to determine the impact of a
self-supervised pre-training on the downstream task so as
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Figure 4 Autoencoder architecture derived from a U-
Net-shape CNN. The encoding part is common to both
CNNs, while the decoder part is only made of transposed
convolutions.

to find a compromise between the final performance and
the amount of reference data required to reach it. For this
purpose, different scenarios have been defined. The best
case scenario, where only the U-Net is used, consists of
training a model with as many reference data as possible.
The employed TanDEM-X data were acquired between
2011 and 2012, chosen to closely align with thereference
data, and is representative of the global variability of the
hamb. This scenario is defined as FL100, meaning fully su-
pervised learning with 100% of the data inside the green
area defined in Figure 1. Different competing scenarios
are created based on: a) the pretext task used in the SSL
part (identity (Id) or inpaiting (In)); b) the type of training
after transferring the weights from SSL to SL. Two possi-
bilities have been tested: Freezing the transferred encoder
weights of the U-Net and training only its decoder (D) part
or using the weights for initialization of the encoder part
of the U-Net, but afterwards training the whole U-Net (D
+ E); c) usage of a reduced amount of input data in the SL
part. The input acquisitions (1.5%, 8%, and 22%) are ran-
domly selected from the ones used for the FL100 case but
keeping the constraint of being representative of the differ-
ent hamb.
To transfer knowledge as relevant as possible to the
U-Net, the autoencoder needs to learn from the com-
plete range of possible geometries of acquisition of
TanDEM-X considering both hamb and orbit directions. We
use acquisitions from inside and in the vicinity of Pennsyl-
vania, USA, from 2011, 2012, 2013 and 2018 for the SSL
training and validation (data inside the brown area defined
in Figure 1). Acquisitions with available references are
also employed to optimize the utilization of data for the
SSL, aiming to maximize the dataset’s extent. The valida-
tion data are selected on the basis of geographical coordi-
nates and are representative of hamb variability and all types
of terrain. For the purpose of testing on the whole vari-
ability of hamb we build different sets of test acquisitions
of similar sizes in which we distinguish hamb < 40 m (low
hamb), hamb ∈ [40−50] m (medium hamb) and hamb > 65 m
(high hamb).

3.3 Results
The obtained results for the different scenarios and for the
test dataset are summarized in Table 1. Instead of overall

Table 1 Obtained F1-score for different testing scenar-
ios. FL100 refers to the ideal scenario, using 100% of the
TanDEM-X data where reference data are available. For
all other competing scenarios, only a percentage of the to-
tal input data are used, as indicated. Pretext tasks in SSL
training: identity (Id) and inpainting (In). Use of trans-
ferred weight in the SL training: only trainable decoder
(D) and encoder + decoder trainable (D + E).

F1-score FL100 FL SSL Id D SSL Id E+D SSL In D SSL In E+D
SL with 1.5% of data

Low hamb 0.920 0.894 0.868 0.886 0.898 0.906
Mid hamb 0.910 0.857 0.843 0.857 0.859 0.878
High hamb 0.919 0.859 0.852 0.852 0.863 0.878

SL with 8% of data
Low hamb 0.920 0.910 0.894 0.903 0.904 0.913
Mid hamb 0.910 0.876 0.855 0.867 0.875 0.884
High hamb 0.919 0.907 0.886 0.890 0.902 0.911

SL with 22% of data
Low hamb 0.920 0.916 0.892 0.909 0.908 0.914
Mid hamb 0.910 0.898 0.875 0.890 0.885 0.901
High hamb 0.919 0.911 0.889 0.905 0.899 0.908

accuracy, the F1-score is used to assess the performance,
since the proportion of forest is unbalanced among the con-
sidered patches. The different scenarios are compared to
the ideal case FL100. In general all scenarios obtained very
high performance. Using the inpainting pretext task in the
SSL training, better results are achieved. With respect to
the trainability of the SL part, the most competitive results
are obtained when just initializing the weights of the en-
coder and training both, encoder and decoder parts of the
U-Net.
An example of reference Lidar forest maps and the corre-
sponding confusion matrices for TanDEM-X of two differ-
ent areas of 1024x1024 pixels are presented in Figure 5
for visual inspection purposes. The results are color-coded
with respect to the terms of the confusion matrix: True Pos-
itives (TP, pixels correctly classified as forest), False Neg-
atives (FN, pixels wrongly classified as non-forest), False
Positives (FP, pixels wrongly classified as forest) and True
Negatives (TN, pixels correctly classified as non-forest).
The FL100 ideal scenario shows a good agreement with
the reference ground truth. Regarding the different SSL
scenarios under investigation, and using only 1.5% of the
total input data with available references, the best perfor-
mance is obtained for the scenario using inpainting as pre-
text task in the SSL training and training both the encoder
and decoder part of the network during the SL part. In the
other scenarios (FL and SSL In D) a higher number of FP
and FN pixels is observed.
In Figure 6 a zoom in of a TanDEM-X forest map, ac-
quired with hamb = 44 m in 2011 over the defined test
region in Figure 1, is compared with the corresponding
Lidar reference data. Narrow paths and small holes in the
forested areas are well detected. Also forest areas are cor-
rectly delimited. This forest map has been obtained using
inpainting in the SSL part. With respect to the SL part, en-
coder and decoder have been trained and only 1.5% of the
available TanDEM-X images overlapping the Lidar refer-
ence data have been used.



Figure 5 Qualitative comparison of results for 2 different areas of 1024x1024 pixels. On the ground truth plots, green
areas correspond to forests and white areas to non-forested zones.

Figure 6 Comparison between the reference Lidar forest map (left) and the predicted TanDEM-X forest map obtained
through SSL (right).

4 Conclusions and outlook

By extending existing research and considering a train-
ing strategy accounting for the global variability of
TanDEM-X acquisitions with respect to the acquisition ge-
ometry, we have successfully demonstrated the effective-
ness of convolutional networks for mapping forests using
TanDEM-X bistatic InSAR data at a resolution of 6 m.
To address the challenge of limited referenced data at this
resolution, we proposed and evaluated self-supervised pre-
training approaches with the identity reconstruction and the
inpainting as pretext tasks. Specifically using inpainting

and sufficient data representing all TanDEM-X acquisition
geometries, showed considerable benefits, such as better
performance and stability during training than the other
competitive scenarios.
The successful implementation of the self-supervised pre-
training strategy is very promising, particularly in regions
like the Amazon rain forest, where reference labelled
data is scarce and challenging to obtain. This approach
opens new possibilities for accurate forest mapping with
TanDEM-X bistatic images leading to improved environ-
mental monitoring and conservation efforts over such ar-
eas.
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